Abstract

Redox-active particles offer significant potential for long-term thermochemical energy storage and solar fuel production. However, high thermal resistance between the particle cloud and heat exchanger wall reduces the efficiency of these systems. Heat transfer between particles and the wall is complex and under-researched, despite its importance in solar thermal energy storage. In this study, we conducted experiments to determine the heat transfer coefficients between a free-falling particle cloud and the heated surface of a tubular furnace under subatmospheric pressure. Key variables explored include particle feed rate from 3.7 to 44 kg s−1 m−2, wall temperature from 300 °C to 900 °C, and pressure from 98,000 Pa to 0.2 Pa. Experimental data for the overall heat transfer coefficient were obtained at various temperatures and particle feed rates, maintaining a lower pressure of 100 Pa. Results showed that at constant wall temperature, the overall heat transfer coefficient increased with higher particle feed rates, but this negatively affected particle temperature gain. Additionally, the combined convective heat transfer coefficient became independent of particle feed rates beyond 20 kg s−1 m−2 at low pressure. Further tests with constant particle feed rates and wall temperature revealed a significant drop in heat transfer performance between 1000 Pa and 10 Pa, due to reduced particle and wall convection. Convective heat transfer contribution became negligible below 10 Pa.

References

1.
Brkic
,
M.
,
Koepf
,
E.
, and
Meier
,
A.
,
2016
, “
Continuous Solar Carbothermal Reduction of Aerosolized ZnO Particles Under Vacuum in a Directly Irradiated Vertical-Tube Reactor
,”
ASME J. Sol. Energy Eng.
,
138
(
2
), p.
021010
.10.1115/1.4032685
2.
Babiniec
,
S. M.
,
Ambrosini
,
A.
,
Stechel
,
E. B.
,
Loutzenhiser
,
P. G.
, and
Miller
,
J. E.
,
2015
, “
Non-Stoichiometric Perovskite Oxides as High-Temperature Storage Media and Their Application to Concentrating Solar Power Generation and Hydrogen Production
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2016-11735C.
3.
Babiniec
,
S. M.
,
Coker
,
E. N.
,
Miller
,
J. E.
, and
Ambrosini
,
A.
,
2016
, “
Doped Calcium Manganites for Advanced High-Temperature Thermochemical Energy Storage
,”
Int. J. Energy Res.
,
40
(
2
), pp.
280
284
.10.1002/er.3467
4.
Brkic
,
M.
,
Koepf
,
E.
, and
Meier
,
A.
,
2017
, “
Solar Carbothermal Reduction of Aerosolized ZnO Particles Under Vacuum: Modeling, Experimentation, and Characterization of a Drop-Tube Reactor
,”
Chem. Eng. J.
,
313
, pp.
435
449
.10.1016/j.cej.2016.12.057
5.
Siefering
,
B. J.
,
Umer
,
M.
,
Stechel
,
E. B.
, and
Fronk
,
B. M.
,
2025
, “
Design and Evaluation of a Dilute Flow Particle-to-Air Heat Exchanger for Energy Storage Applications
,”
Appl. Therm. Eng.
,
261
, p.
125109
.10.1016/j.applthermaleng.2024.125109
6.
Siegel
,
N. P.
,
Miller
,
J. E.
,
Ermanoski
,
I.
,
Diver
,
R. B.
, and
Stechel
,
E. B.
,
2013
, “
Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles
,”
Ind. Eng. Chem. Res.
,
52
(
9
), pp.
3276
3286
.10.1021/ie400193q
7.
Miller
,
J. E.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
Allendorf
,
M. D.
, and
McDaniel
,
A. H.
,
2014
, “
Advancing Oxide Materials for Thermochemical Production of Solar Fuels
,”
Energy Procedia
,
49
, pp.
2019
2026
.10.1016/j.egypro.2014.03.214
8.
Miller
,
J. E.
,
McDaniel
,
A. H.
, and
Allendorf
,
M. D.
,
2014
, “
Considerations in the Design of Materials for Solar-Driven Fuel Production Using Metal-Oxide Thermochemical Cycles
,”
Adv. Energy Mater.
,
4
(
2
), pp.
1
19
.10.1002/aenm.201300469
9.
Schieber
,
G. L.
,
Stechel
,
E. B.
,
Ambrosini
,
A.
,
Miller
,
J. E.
, and
Loutzenhiser
,
P. G.
,
2017
, “
H2O Splitting Via a Two-Step Solar Thermoelectrolytic Cycle Based on Non-Stoichiometric Ceria Redox Reactions: Thermodynamic Analysis
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
18785
18793
.10.1016/j.ijhydene.2017.06.098
10.
Ermanoski
,
I.
,
Siegel
,
N. P.
, and
Stechel
,
E. B.
,
2013
, “
A New Reactor Concept for Efficient Solar-Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
135
(
3
), pp.
1
10
.10.1115/1.4023356
11.
Abanades
,
S.
, and
Flamant
,
G.
,
2006
, “
Thermochemical Hydrogen Production From a Two-Step Solar-Driven Water-Splitting Cycle Based on Cerium Oxides
,”
Sol. Energy
,
80
(
12
), pp.
1611
1623
.10.1016/j.solener.2005.12.005
12.
Vishnevetsky
,
I.
, and
Epstein
,
M.
,
2011
, “
Metal Oxides Reduction in Vacuum: Setup Development and First Experimental Results
,”
Proceedings of the 17th SolarPACES Conference
, Granada, Spain, Sept. 20--23, pp. 1--8.http://www.labmet.ntua.gr/ENEXAL/news/SolarPACES2011%2023698.pdf
13.
Kruesi
,
M.
,
Galvez
,
M. E.
,
Halmann
,
M.
, and
Steinfeld
,
A.
,
2011
, “
Solar Aluminum Production by Vacuum Carbothermal Reduction of Alumina-Thermodynamic and Experimental Analyses
,”
Metall. Mater. Trans. B
,
42
(
1
), pp.
254
260
.10.1007/s11663-010-9461-6
14.
Halmann
,
M.
,
Frei
,
A.
, and
Steinfeld
,
A.
,
2011
, “
Vacuum Carbothermic Reduction of Al2O3, BeO, MgO-CaO, TiO2, ZrO2, HfO2þZrO2, SiO2, SiO2þFe2O3, and GeO2 to the Metals. A Thermodynamic Study
,”
Miner. Process. Extr. Metall. Rev.
,
32
(
4
), pp.
247
266
.10.1080/08827508.2010.530723
15.
Wu
,
S.
,
Zhou
,
C.
,
Doroodchi
,
E.
,
Nellore
,
R.
, and
Moghtaderi
,
B.
,
2018
, “
A Review on High-Temperature Thermochemical Energy Storage Based on Metal Oxides Redox Cycle
,”
Energy Convers. Manage.
,
168
, pp.
421
453
.10.1016/j.enconman.2018.05.017
16.
Ermanoski
,
I.
, and
Siegel
,
N.
,
2014
, “
Annual Average Efficiency of a Solar-Thermochemical Reactor
,”
Energy Procedia
,
49
, pp.
1932
1939
.10.1016/j.egypro.2014.03.205
17.
Jia
,
R.
,
Wang
,
Y.
,
Guo
,
J.
,
Yu
,
Z.
, and
Kang
,
H.
,
2017
, “
Research on the Heat Transfer and Flow Characteristics of Fin-Tube Exchanger Under Low Pressure Environment
,”
Appl. Therm. Eng.
,
112
, pp.
1163
1171
.10.1016/j.applthermaleng.2016.06.137
18.
Zhang
,
J.
,
Liu
,
J.
,
Zhang
,
L.
,
Liu
,
Q.
, and
Wu
,
Q.
,
2020
, “
Effect of Ambient Pressure on Air Side Heat Transfer and Flow Characteristics of Plain Finned Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
158
, p.
120010
.10.1016/j.ijheatmasstransfer.2020.120010
19.
Wan
,
R.
,
Wang
,
Y.
,
Kavtaradze
,
R.
, and
He
,
X.
,
2020
, “
Heat Transfer and Flow Characteristics of Offset Fin and Flat Tube Heat Exchangers Under Low Pressure Environments
,”
Therm. Sci.
,
24
(
3 Part B
), pp.
2023
2034
.10.2298/TSCI180721296W
20.
Boetcher
,
S. K. S.
,
2014
, “
Natural-Convection Heat Transfer at Reduced Pressure—Spheres and Cylinders. Thermal Engineering and Applied Science
,” Springer, Cham, Swizterland.
21.
Hirano
,
H.
,
Ozoe
,
H.
, and
Okamoto
,
N.
,
2003
, “
Experimental Study of Natural Convection Heat Transfer of Air in a Cube Below Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4483
4488
.10.1016/S0017-9310(03)00275-8
22.
McAdams
,
W. A.
,
1954
,
Heat Transmission
,
McGraw-Hill Book Co
,
New York
.
23.
Zeng
,
X.
,
Su
,
X.
,
Zhang
,
X.
,
Pan
,
W.
,
Long
,
Z.
, and
Shen
,
X.
,
2023
, “
Experimental Investigation of Convective Heat Transfer in the Aircraft Cabin Environment at Low Air Pressure
,”
Build. Environ.
,
233
, p.
110125
.10.1016/j.buildenv.2023.110125
24.
Saidi
,
M.
, and
Abardeh
,
R. H.
,
2010
, “
Air Pressure Dependence of Natural-Convection Heat Transfer
,”
Proceedings of the World Congress on Engineering 2010 Vol. 2 WCE 2010
, London, UK, June 30–July 2, pp.
1444
1447
.
25.
Morgan
,
V. T.
,
1975
, “
The Overall Convective Heat Transfer From Smooth Circular Cylinders
,”
Adv. Heat Transfer
,
11
, pp.
199
264
.10.1016/S0065-2717(08)70075-3
26.
Churchill
,
H. H.
, and
Chu
,
S. W.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1049
1053
.10.1016/0017-9310(75)90222-7
27.
Mehrabian
,
M. A.
,
2003
, “
Effect of Pressure on Free Convection Heat Transfer From a Horizontal Cylinder at Constant Wall Temperature
,”
Int. J. Eng. Modell.
,
16
(
1–2
), pp.
55
61
.https://hrcak.srce.hr/316074
28.
Xie
,
F.
,
Li
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
, and
Wang
,
L.
,
2017
, “
A Forced Convection Heat Transfer Correlation of Rarefied Gases Cross-Flowing Over a Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
327
336
.10.1016/j.expthermflusci.2016.09.002
29.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
30.
Peinado
,
L.
,
Muntean
,
V.
, and
Pérez-Grande
,
I.
,
2021
, “
A Free Convection Heat Transfer Correlation for Very Thin Horizontal Wires in Rarefied Atmospheres
,”
Exp. Therm. Fluid Sci.
,
122
, p.
110295
.10.1016/j.expthermflusci.2020.110295
31.
Peinado
,
L.
,
Muntean
,
V.
,
Sensor
,
A. T.
, and
Engineer
,
T.
,
2020
, “
Effect of Rarefied Atmospheres on Natural Convection Over Very Thin Wires
,”
Proceedings of the 50th International Conference on Environmental Systems
, pp.
1
–1
2
.https://ttu-ir.tdl.org/server/api/core/bitstreams/56962d57-4a08-47bb-bdb5-0e299b2bbf01/content
32.
Kyte
,
J. R.
,
Madden
,
A. J.
, and
Piret
,
E. L.
,
1953
, “
Natural-Convection Heat Transfer at Reduced Pressure-Spheres and Cylinders
,”
Chem. Eng. Prog.
,
49
(
12
), pp.
653
662
.
33.
Fujii
,
T.
,
Fujii
,
M.
, and
Matsunaga
,
T.
,
1979
, “
A Numerical Analysis of Laminar Free Convection Around an Isothermal Horizontal Circular Cylinder
,”
Numer. Heat Transfer
,
2
(
3
), pp.
329
344
.10.1080/10407787908913417
34.
Liu
,
W.
,
Wang
,
J.
,
Li
,
Y.
,
Zhu
,
Z.
,
Qie
,
D.
, and
Ding
,
L.
,
2019
, “
Natural Convection Heat Transfer at Reduced Pressures
,”
Exp. Heat Transfer
,
32
(
1
), pp.
14
24
.10.1080/08916152.2018.1468833
35.
Hosseini
,
R.
, and
Taherian
,
H.
,
2004
, “
Natural Convection Heat Transfer From a Vertical Plate to Air at Very Low Pressure
,”
Trans. Can. Soc. Mech. Eng.
,
28
(
2B
), pp.
309
319
.10.1139/tcsme-2004-0022
36.
Umer
,
M.
,
Siefering
,
B. J.
, and
Fronk
,
B. M.
,
2024
, “
Experimental Investigation of Multi-Mode Heat Transfer to a Free-Falling Dilute Particle Cloud in a Heated Vertical Tube
,”
Exp. Therm. Fluid Sci.
,
159
, p.
111278
.10.1016/j.expthermflusci.2024.111278
37.
Sheet
,
T. D.
,
2023
, “
Carbobead High-Performance Ceramic Media
,” Carbon ceramics, Houston, TX, accessed Apr. 23, 2025, https://carbo.tech/products/carbohsp/
38.
Siegel
,
N. P.
,
Gross
,
M. D.
, and
Coury
,
R.
,
2015
, “
The Development of Direct Absorption and Storage Media for Falling Particle Solar Central Receivers
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041003
.10.1115/1.4030069
39.
Arkhurst
,
B.
,
Ashley
,
S. E.
, and
Mauldin
,
N.
,
2021
, “
Thermophysical Property Measurement of Heat Transfer Media and Containment Materials
,” U.S. Department of Energy, Washington, DC, accessed Apr. 23, 2025, https://www.energy.gov/sites/default/files/2021-09/Yee_GunawanThermophysical%20Property%20Measurements%20of%20Heat%20Transfer%20Media%20and%20Containment%20Materials_GeorgiaTech.pdf
40.
Ho
,
C. K.
,
Christian
,
J. M.
,
Romano
,
D.
,
Yellowhair
,
J.
,
Siegel
,
N.
,
Savoldi
,
L.
, and
Zanino
,
R.
,
2017
, “
Characterization of Particle Flow in a Free-Falling Solar Particle Receiver
,”
ASME J. Sol. Energy Eng.
,
139
(
2
), p.
021011
.10.1115/1.4035258
41.
Lebigot
,
E. O.
,
2019
, “
Uncertainties Python Package Documentation
,”
GitHub
,
San Francisco, CA
.
42.
Kline
,
S.
, and
Mcclintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
43.
Johnstone
,
H. F.
,
Pigford
,
R. L.
, and
Chapin
,
J. H.
,
1941
, “
Heat Transfer to Clouds of Falling Particles
,”
University of Illinois Urbana
,
Champaign, IL
, pp.
194
196
.
44.
Gidaspow
,
D.
,
1994
, “
One-Dimensional Steady Gas–Solid Flow
,”
Academic Press Harcourt Brace & Company
,
New York
.
45.
Grace
,
T. M.
,
Avidan
,
J. R.
, and
Knowlton
,
A. A.
,
2016
,
Circulating Fluidized Beds
,
Blackie Academic and Professional
,
London, UK
.
46.
Raj
,
V. C.
, and
Prabhu
,
S. V.
,
2013
, “
Measurement of Surface Temperature and Emissivity of Different Materials by Two-Colour Pyrometry
,”
Rev. Sci. Instrum.
,
84
(
12
), p.
124903
.10.1063/1.4847115
47.
Chen
,
C.
,
Yang
,
C.
,
Ranjan
,
D.
,
Loutzenhiser
,
P. G.
, and
Zhang
,
Z. M.
,
2020
, “
Spectral Radiative Properties of Ceramic Particles for Concentrated Solar Thermal Energy Storage Applications
,”
Int. J. Thermophys.
,
41
(
11
), pp.
1
40
.10.1007/s10765-020-02733-5
48.
Devienne
,
F. M.
,
1972
, “
Advances in Heat Transfer
,”
Academic Press. Inc.
,
New York, New York
.
49.
Keifer
,
G.
, and
Effenberger
,
F.
,
1967
, “
Physical Chemistry by Moore.pdf
,”
Angew. Chem. Int. Ed.
,
6
(
11
), pp.
951
952
.https://archive.org/details/dli.ernet.448854/page/n13/mode/2up
50.
Vincenti
,
W. G.
,
Kruger
,
C. H.
, and
Teichmann
,
T.
,
1966
, “
Introduction to Physical Gas Dynamics
,”
Phys. Today
,
19
(
10
), p.
95
.10.1063/1.3047788
You do not currently have access to this content.