Abstract

A packed bed of rocks using air as the heat transfer fluid is a promising large-scale thermal energy storage technology for low-cost pumped thermal electricity storage. When the gas seepage velocity is small, with the use of Darcy's equation, gas flow through porous media is a parabolic PDE problem, whose numerical solution is not computationally demanding. The Forchheimer or Ergun equations have to be used, when the form drag under increased velocity becomes comparable with the surface shears. The Forchheimer equation introduces nonlinear pressure–velocity coupling issue that needs to be iteratively solved and hence is computationally involving. To overcome the coupling issue, this paper proposes a data-driven tuning factor on the permeability parameter to account for the form drag, so that the Darcy's equation could still be employed and the problem maintains a parabolic PDE in the Forchheimer regime for efficient computational speed. It was found that the tuning factor only needs to correlate to the Reynolds number and has good extrapolation ability. Furthermore, wall effects on thermal charging efficiency were analyzed by employing the tuned Darcy's equation. It was found that there is linear relationship between the reduced pressure drops of a packed bed and increased charging time due to wall channeling effects.

References

1.
EA
,
2021
, “
Net Zero by 2050: A Roadmap for the Global Energy Sector
,” International Energy Agency, Paris, France, Report No.
2021:222
.https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf
2.
Ziegler
,
M. S.
,
Mueller
,
J. M.
,
Pereira
,
G. D.
,
Song
,
J.
,
Ferrara
,
M.
,
Chiang
,
Y.-M.
, and
Trancik
,
J. E.
,
2019
, “
Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization
,”
Joule
,
3
(
9
), pp.
2134
2153
.10.1016/j.joule.2019.06.012
3.
Guo
,
Y.
,
Wu
,
J.
,
Tan
,
C.
,
Zheng
,
Y.
,
Zhang
,
L.
, and
Zhao
,
C.
,
2022
, “
Effect of Alkali Metal Molten Salt Modification on Heat Storage Performance of MgO
,”
Electr. Power Technol. Environ. Prot.
,
38
(
3
), pp.
157
165
.
4.
Trevisan
,
S.
,
Wang
,
W.
,
Guedez
,
R.
, and
Laumert
,
B.
,
2022
, “
Experimental Evaluation of an Innovative Radial-Flow High-Temperature Packed Bed Thermal Energy Storage
,”
Appl. Energy
,
311
, p.
118672
.10.1016/j.apenergy.2022.118672
5.
McTigue
,
J. D.
,
White
,
A. J.
, and
Markides
,
C. N.
,
2015
, “
Parametric Studies and Optimisation of Pumped Thermal Electricity Storage
,”
Appl. Energy
,
137
, pp.
800
811
.10.1016/j.apenergy.2014.08.039
6.
Wang
,
L.
,
Cardenas
,
M. B.
,
Wang
,
T.
,
Zhou
,
J.-Q.
,
Zheng
,
L.
,
Chen
,
Y.-F.
, and
Chen
,
X.
,
2022
, “
The Effect of Permeability on Darcy-to-Forchheimer Flow Transition
,”
J. Hydrol.
,
610
, p.
127836
.10.1016/j.jhydrol.2022.127836
7.
Whitaker
,
S.
,
1996
, “
The Forchheimer Equation: A Theoretical Development
,”
Transp. Porous Med.
,
25
(
1
), pp.
27
61
.10.1007/BF00141261
8.
Prieur Du Plessis
,
J.
,
1994
, “
Analytical Quantification of Coefficients in the Ergun Equation for Fluid Friction in a Packed Bed
,”
Transp. Porous Med.
,
16
(
2
), pp.
189
207
.10.1007/BF00617551
9.
Dukhan
,
N.
,
Bağcı
,
Ö.
, and
Özdemir
,
M.
,
2014
, “
Experimental Flow in Various Porous Media and Reconciliation of Forchheimer and Ergun Relations
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
425
433
.10.1016/j.expthermflusci.2014.06.011
10.
Amiri
,
L.
,
Ghoreishi-Madiseh
,
S. A.
,
Hassani
,
F. P.
, and
Sasmito
,
A. P.
,
2019
, “
Estimating Pressure Drop and Ergun/Forchheimer Parameters of Flow Through Packed Bed of Spheres With Large Particle Diameters
,”
Powder Technol.
,
356
, pp.
310
324
.10.1016/j.powtec.2019.08.029
11.
Chen
,
Y.-F.
,
Zhou
,
J.-Q.
,
Hu
,
S.-H.
,
Hu
,
R.
, and
Zhou
,
C.-B.
,
2015
, “
Evaluation of Forchheimer Equation Coefficients for Non-Darcy Flow in Deformable Rough-Walled Fractures
,”
J. Hydrol.
,
529
, pp.
993
1006
.10.1016/j.jhydrol.2015.09.021
12.
Koekemoer
,
A.
, and
Luckos
,
A.
,
2015
, “
Effect of Material Type and Particle Size Distribution on Pressure Drop in Packed Beds of Large Particles: Extending the Ergun Equation
,”
Fuel
,
158
, pp.
232
238
.10.1016/j.fuel.2015.05.036
13.
Noël
,
E.
,
Teixeira
,
D.
, and
Preux
,
G.
,
2023
, “
Modelling of Gas-Solid Heat Transfer and Pressure Drop in a Rock-Packed Bed Using Pore-Scale Simulations
,”
Int. J. Heat Mass Transfer
,
214
, p.
124432
.10.1016/j.ijheatmasstransfer.2023.124432
14.
Montillet
,
A.
,
Akkari
,
E.
, and
Comiti
,
J.
,
2007
, “
About a Correlating Equation for Predicting Pressure Drops Through Packed Beds of Spheres in a Large Range of Reynolds Numbers
,”
Chem. Eng. Process.: Process Intensif.
,
46
(
4
), pp.
329
333
.10.1016/j.cep.2006.07.002
15.
Wang
,
M.
,
Bu
,
S.
,
Zhou
,
B.
,
Gong
,
B.
,
Li
,
Z.
, and
Chen
,
D.
,
2023
, “
Pore-Scale Simulation on Flow and Heat Transfer Characteristics in Packed Beds With Internal Heat Sources at Low Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
213
, p.
124325
.10.1016/j.ijheatmasstransfer.2023.124325
16.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
17.
Vandoormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
18.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
19.
Holzinger
,
G.
,
2015
,
Openfoam a Little User-Manual; CD-Laboratory-Particulate Flow Modelling
,
Johannes Keplper University
,
Linz, Austria
.
20.
Qin
,
J.
,
Pan
,
H.
,
Rahman
,
M. M.
,
Tian
,
X.
, and
Zhu
,
Z.
,
2021
, “
Introducing Compressibility With SIMPLE Algorithm
,”
Math. Comput. Simul.
,
180
, pp.
328
353
.10.1016/j.matcom.2020.09.010
21.
Serra
,
N.
, and
Semiao
,
V.
,
2021
, “
ESIMPLE, a New Pressure–Velocity Coupling Algorithm for Built-Environment CFD Simulations
,”
Build. Environ.
,
204
, p.
108170
.10.1016/j.buildenv.2021.108170
22.
Zhou
,
P.
,
Wang
,
H.
,
Dai
,
Y.
, and
Huang
,
C.
,
2022
, “
Performance Evaluation of Different Pressure-Velocity Decoupling Schemes in Built Environment Simulation
,”
Energy Build.
,
257
, p.
111763
.10.1016/j.enbuild.2021.111763
23.
Evstigneev
,
N. M.
,
Ryabkov
,
O. I.
, and
Gerke
,
K. M.
,
2023
, “
Stationary Stokes Solver for Single-Phase Flow in Porous Media: A Blastingly Fast Solution Based on Algebraic Multigrid Method Using GPU
,”
Adv. Water Resour.
,
171
, p.
104340
.10.1016/j.advwatres.2022.104340
24.
Tahmasebi
,
P.
,
Kamrava
,
S.
,
Bai
,
T.
, and
Sahimi
,
M.
,
2020
, “
Machine Learning in Geo- and Environmental Sciences: From Small to Large Scale
,”
Adv. Water Resour.
,
142
, p.
103619
.10.1016/j.advwatres.2020.103619
25.
Santos
,
J. E.
,
Xu
,
D.
,
Jo
,
H.
,
Landry
,
C. J.
,
Prodanović
,
M.
, and
Pyrcz
,
M. J.
,
2020
, “
PoreFlow-Net: A 3D Convolutional Neural Network to Predict Fluid Flow Through Porous Media
,”
Adv. Water Resour.
,
138
, p.
103539
.10.1016/j.advwatres.2020.103539
26.
Silva
,
V. L. S.
,
Salinas
,
P.
,
Jackson
,
M. D.
, and
Pain
,
C. C.
,
2021
, “
Machine Learning Acceleration for Nonlinear Solvers Applied to Multiphase Porous Media Flow
,”
Comput. Methods Appl. Mech. Eng.
,
384
, p.
113989
.10.1016/j.cma.2021.113989
27.
Wang
,
Y. D.
,
Chung
,
T.
,
Armstrong
,
R. T.
, and
Mostaghimi
,
P.
,
2021
, “
ML-LBM: Predicting and Accelerating Steady State Flow Simulation in Porous Media With Convolutional Neural Networks
,”
Transp. Porous Med.
,
138
(
1
), pp.
49
75
.10.1007/s11242-021-01590-6
28.
Kazemi
,
M.
,
Takbiri-Borujeni
,
A.
,
Takbiri
,
S.
, and
Kazemi
,
A.
,
2023
, “
Physics-Informed Data-Driven Model for Fluid Flow in Porous Media
,”
Comput. Fluids
,
264
, p.
105960
.10.1016/j.compfluid.2023.105960
29.
Wang
,
K.
,
Chen
,
Y.
,
Mehana
,
M.
,
Lubbers
,
N.
,
Bennett
,
K. C.
,
Kang
,
Q.
,
Viswanathan
,
H. S.
, and
Germann
,
T. C.
,
2021
, “
A Physics-Informed and Hierarchically Regularized Data-Driven Model for Predicting Fluid Flow Through Porous Media
,”
J. Comput. Phys.
,
443
, p.
110526
.10.1016/j.jcp.2021.110526
30.
Wang
,
N.
,
Chang
,
H.
, and
Zhang
,
D.
,
2022
, “
Surrogate and Inverse Modeling for Two-Phase Flow in Porous Media Via Theory-Guided Convolutional Neural Network
,”
J. Comput. Phys.
,
466
, p.
111419
.10.1016/j.jcp.2022.111419
31.
Yan
,
B.
,
Harp
,
D. R.
,
Chen
,
B.
,
Hoteit
,
H.
, and
Pawar
,
R. J.
,
2022
, “
A Gradient-Based Deep Neural Network Model for Simulating Multiphase Flow in Porous Media
,”
J. Comput. Phys.
,
463
, p.
111277
.10.1016/j.jcp.2022.111277
32.
Choi
,
Y. S.
,
Kim
,
S. J.
, and
Kim
,
D.
,
2008
, “
A Semi-Empirical Correlation for Pressure Drop in Packed Beds of Spherical Particles
,”
Transp. Porous Med.
,
75
, pp.
133
149
.10.1007/s11242-008-9215-y
33.
Eisfeld
,
B.
, and
Schnitzlein
,
K.
,
2001
, “
The Influence of Confining Walls on the Pressure Drop in Packed Beds
,”
Chem. Eng. Sci.
,
56
(
14
), pp.
4321
4329
.10.1016/S0009-2509(00)00533-9
34.
Cheng
,
N.-S.
,
2011
, “
Wall Effect on Pressure Drop in Packed Beds
,”
Powder Technol.
,
210
(
3
), pp.
261
266
.10.1016/j.powtec.2011.03.026
35.
Guo
,
Z.
,
Sun
,
Z.
,
Zhang
,
N.
, and
Ding
,
M.
,
2019
, “
Influence of Confining Wall on Pressure Drop and Particle-to-Fluid Heat Transfer in Packed Beds With Small D/d Ratios Under High Reynolds Number
,”
Chem. Eng. Sci.
,
209
, p.
115200
.10.1016/j.ces.2019.115200
36.
Reger
,
D.
,
Merzari
,
E.
,
Balestra
,
P.
, and
Hassan
,
Y.
,
2024
, “
Improving the Modeling of Near-Wall Interphase Heat Transfer in Porous Media Models of Pebble Bed Reactors
,”
Nucl. Eng. Des.
,
427
, p.
113424
.10.1016/j.nucengdes.2024.113424
37.
Nield
,
D. A.
, and
Bejan
,
A.
,
2017
,
Convection in Porous Media
, Fifth edition,
Springer
,
Cham, Switzerland
.
38.
Du Plessis
,
J. P.
, and
Masliyah
,
J. H.
,
1988
, “
Mathematical Modelling of Flow Through Consolidated Isotropic Porous Media
,”
Transp. Porous Med.
,
3
(
2
), pp.
145
161
.10.1007/BF00820342
39.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
40.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
41.
Cascetta
,
M.
,
Cau
,
G.
,
Puddu
,
P.
, and
Serra
,
F.
,
2016
, “
A Comparison Between CFD Simulation and Experimental Investigation of a Packed-Bed Thermal Energy Storage System
,”
Appl. Therm. Eng.
,
98
, pp.
1263
1272
.10.1016/j.applthermaleng.2016.01.019
42.
Liu
,
S.
,
Ahmadi-Senichault
,
A.
,
Levet
,
C.
, and
Lachaud
,
J.
,
2024
, “
Development and Validation of a Local Thermal Non-Equilibrium Model for High-Temperature Thermal Energy Storage in Packed Beds
,”
J. Energy Storage
,
78
, p.
109957
.10.1016/j.est.2023.109957
You do not currently have access to this content.