Abstract

Accurately reconstructing and predicting the global temperature field of turbine blades is of significant importance in the field of aero-engines. The complexities in geometries and operation conditions of the blades further complicate these problems, because temperatures can only be acquired from sparse and noisy measurements. Proper orthogonal decomposition (POD) and deep neural network auto-encoder (AE) are two typical reduced-order models to reconstruct the global temperature fields from sparse data points, and they are further combined with long short-term memory (LSTM) networks for prediction. In contrast with the linear modes of POD, the nonlinear features of AE may lead to advantages in reconstructing and predicting of temperature fields. A systematic comparison between the two methods is seldom studied in existing research, particularly regarding their noise resistance and time-series prediction capabilities. Therefore, a detailed study is conducted in this paper. The two-dimensional cross section of Mark II blades is used as an example; this work compares the performance of POD–LSTM and AE–LSTM in reconstructing and predicting the global temperature field of turbine blades based on sparse and noisy measurement data under transient operating conditions. The results indicate that both reduced-order prediction models achieved low mean absolute percentage errors (MAPEs) and high computational efficiency for reconstruction and prediction. With 12 sparse data points, the reconstruction error of two methods is comparable. Compared to the POD method, reduction coefficients of the AE method are more robust and have a uniform energy distribution, so AE exhibits superior noise resistance and time-series prediction capabilities.

References

1.
Li
,
J.
,
Liu
,
T.
,
Wang
,
Y.
, and
Xie
,
Y.
,
2022
, “
Integrated Graph Deep Learning Framework for Flow Field Reconstruction and Performance Prediction of Turbomachinery
,”
Energy
,
254
, p.
124440
.10.1016/j.energy.2022.124440
2.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2021
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME J. Turbomach.
,
143
(
10
), p.
101005
.10.1115/1.4050675
3.
Dorfman
,
A. S.
,
1996
, “
Advanced Calculation Method for the Surface Temperature Distribution of Turbine Blades
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
1
), pp.
18
22
.10.1115/1.2824033
4.
Wen
,
F.
,
Li
,
Z.
,
Wan
,
C.
,
Su
,
L.
,
Zhao
,
Z.
,
Zeng
,
J.
,
Wang
,
S.
, and
Pan
,
B.
,
2023
, “
Cost Reduction for Data Acquisition Based on Data Fusion: Reconstructing the Surface Temperature of a Turbine Blade
,”
Phys. Fluids
,
35
(
1
), p.
016110
.10.1063/5.0132105
5.
Ali, S. S., Yadav, V. S., Nouri, B., and Ghani, A.,2024, “Hybrid Surrogate Modeling Approach for Data Reduction and Design Space Exploration of Turbine Blades.”
ASME. J. Eng. Gas Turbines Power
, 147(7), p. 071004.10.1115/1.4066998
6.
Wu
,
X.
,
Lu
,
L.
,
Liang
,
L.
,
Mei
,
X.
,
Liang
,
Q.
,
Zhong
,
Y.
,
Huang
,
Z.
,
Yang
,
S.
,
He
,
H.
, and
Xie
,
Y.
,
2024
, “
Quick Prediction of Complex Temperature Fields Using Conditional Generative Adversarial Networks
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
11
), p.
113301
.10.1115/1.4065911
7.
Samadiani
,
E.
, and
Joshi
,
Y.
,
2010
, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
7
), p.
071402
.10.1115/1.4000978
8.
Schmid
,
P. J.
,
2022
, “
Dynamic Mode Decomposition and Its Variants
,”
Annu. Rev. Fluid Mech.
,
54
(
1
), pp.
225
254
.10.1146/annurev-fluid-030121-015835
9.
Wang
,
Y.
,
Ding
,
X.
,
Hu
,
K.
,
Fang
,
F.
,
Navon
,
I. M.
, and
Lin
,
G.
,
2021
, “
Feasibility of DEIM for Retrieving the Initial Field Via Dimensionality Reduction
,”
J. Comput. Phys.
,
429
, p.
110005
.10.1016/j.jcp.2020.110005
10.
Vuppula
,
V. K. R.
,
Ramanujam
,
M.
, and
Runkana
,
V.
,
2024
, “
Reduced-Order Modeling of Conjugate Heat Transfer in Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
227
, p.
125537
.10.1016/j.ijheatmasstransfer.2024.125537
11.
Zheng
,
Y.
, and
Yin
,
Z.
,
2025
, “
Cutting Temperature Field Online Reconstruction Using Temporal Convolution and Deep Learning Networks
,”
Int. J. Heat Mass Transfer
,
241
, p.
126766
.10.1016/j.ijheatmasstransfer.2025.126766
12.
Hughes
,
M. T.
,
Kini
,
G.
, and
Garimella
,
S.
,
2021
, “
Status, Challenges, and Potential for Machine Learning in Understanding and Applying Heat Transfer Phenomena
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
12
), p.
120802
.10.1115/1.4052510
13.
Yang
,
B.
,
Liu
,
L.
,
Huang
,
H.
,
Wang
,
Y.
,
Li
,
D.
,
Yang
,
Q.
,
Yin
,
L.
, and
Zhang
,
Z.
,
2024
, “
A Real-Time Temperature Field Prediction Method for Steel Rolling Heating Furnaces Based on Graph Neural Networks
,”
Int. J. Heat Mass Transfer
,
235
, p.
126220
.10.1016/j.ijheatmasstransfer.2024.126220
14.
Jiang
,
G.
,
Kang
,
M.
,
Cai
,
Z.
,
Wang
,
H.
,
Liu
,
Y.
, and
Wang
,
W.
,
2022
, “
Online Reconstruction of 3D Temperature Field Fused With POD-Based Reduced Order Approach and Sparse Sensor Data
,”
Int. J. Therm. Sci.
,
175
, p.
107489
.10.1016/j.ijthermalsci.2022.107489
15.
Mulani
,
K.
,
Talukdar
,
P.
,
Das
,
A.
, and
Alagirusamy
,
R.
,
2015
, “
Performance Analysis and Feasibility Study of Ant Colony Optimization, Particle Swarm Optimization and Cuckoo Search Algorithms for Inverse Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
89
, pp.
359
378
.10.1016/j.ijheatmasstransfer.2015.05.015
16.
Dowell
,
E. H.
,
1996
, “
Eigenmode Analysis in Unsteady Aerodynamics-Reduced-Order Models
,”
AIAA J.
,
34
(
8
), pp.
1578
1583
.10.2514/3.13274
17.
Liu
,
Y.
,
Zhang
,
W.
, and
Xia
,
Z.
,
2022
, “
A New Data Assimilation Method of Recovering Turbulent Mean Flow Field at High Reynolds Numbers
,”
Aerosp. Sci. Technol.
,
126
, p.
107328
.10.1016/j.ast.2022.107328
18.
Sun
,
F.
,
Xie
,
G.
,
Song
,
J.
, and
Markides
,
C. N.
,
2022
, “
Proper Orthogonal Decomposition and Physical Field Reconstruction With Artificial Neural Networks (ANN) for Supercritical Flow Problems
,”
Eng. Anal. Boundary Elem.
,
140
, pp.
282
299
.10.1016/j.enganabound.2022.04.001
19.
Procacci
,
A.
,
Amaduzzi
,
R.
,
Coussement
,
A.
, and
Parente
,
A.
,
2023
, “
Adaptive Digital Twins of Combustion Systems Using Sparse Sensing Strategies
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4257
4266
.10.1016/j.proci.2022.07.029
20.
Murata
,
T.
,
Fukami
,
K.
, and
Fukagata
,
K.
,
2020
, “
Nonlinear Mode Decomposition With Convolutional Neural Networks for Fluid Dynamics
,”
J. Fluid Mech.
,
882
, p.
A13
.10.1017/jfm.2019.822
21.
Hinton
,
G. E.
,
Osindero
,
S.
, and
Teh
,
Y. W.
,
2006
, “
A Fast Learning Algorithm for Deep Belief Nets
,”
Neural Comput.
,
18
(
7
), pp.
1527
1554
.10.1162/neco.2006.18.7.1527
22.
Lee
,
S.
, and
You
,
D.
,
2019
, “
Data-Driven Prediction of Unsteady Flow Over a Circular Cylinder Using Deep Learning
,”
J. Fluid Mech.
,
879
, pp.
217
254
.10.1017/jfm.2019.700
23.
Peng
,
X.
,
Li
,
X.
,
Gong
,
Z.
,
Zhao
,
X.
, and
Yao
,
W.
,
2022
, “
A Deep Learning Method Based on Partition Modeling for Reconstructing Temperature Field
,”
Int. J. Therm. Sci.
,
182
, p.
107802
.10.1016/j.ijthermalsci.2022.107802
24.
Sekar
,
V.
,
Jiang
,
Q.
,
Shu
,
C.
, and
Khoo
,
B. C.
,
2019
, “
Fast Flow Field Prediction Over Airfoils Using Deep Learning Approach
,”
Phys. Fluids
,
31
(
5
), p.
057103
.10.1063/1.5094943
25.
Graves
,
A.
,
2012
, “
Long Short-Term Memory
,”
Supervised Sequence Labelling With Recurrent Neural Networks
, Springer, Berlin, Germany, pp.
37
45
.
26.
Abadía-Heredia
,
R.
,
López-Martín
,
M.
,
Carro
,
B.
,
Arribas
,
J. I.
,
Pérez
,
J. M.
, and
Le Clainche
,
S.
,
2022
, “
A Predictive Hybrid Reduced Order Model Based on Proper Orthogonal Decomposition Combined With Deep Learning Architectures
,”
Expert Syst. Appl.
,
187
, p.
115910
.10.1016/j.eswa.2021.115910
27.
Kao
,
I. F.
,
Liou
,
J. Y.
,
Lee
,
M. H.
, and
Chang
,
F. J.
,
2021
, “
Fusing Stacked Autoencoder and Long Short-Term Memory for Regional Multistep-Ahead Flood Inundation Forecasts
,”
J. Hydrol.
,
598
, p.
126371
.10.1016/j.jhydrol.2021.126371
28.
Jiang
,
Y.
,
Hou
,
X. R.
,
Wang
,
X. G.
,
Wang
,
Z. H.
,
Yang
,
Z. L.
, and
Zou
,
Z. J.
,
2022
, “
Identification Modeling and Prediction of Ship Maneuvering Motion Based on LSTM Deep Neural Network
,”
J. Mar. Sci. Technol.
,
27
(
1
), pp.
125
137
.10.1007/s00773-021-00819-9
29.
Liu
,
Y.
,
Gong
,
C.
,
Yang
,
L.
, and
Chen
,
Y.
,
2020
, “
DSTP-RNN: A Dual Stage Two-Phase Attention-Based Recurrent Neural Network for Long-Term and Multivariate Time Series Prediction
,”
Expert Syst. Appl.
,
143
, p.
113082
.10.1016/j.eswa.2019.113082
30.
Du
,
X.
,
Hu
,
C.
, and
Dong
,
H.
,
2024
, “
POD-LSTM Model for Predicting Pressure Time Series on Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
245
, p.
105651
.10.1016/j.jweia.2024.105651
31.
Huang
,
J.
,
Liu
,
H.
, and
Cai
,
W.
,
2019
, “
Online In Situ Prediction of 3-D Flame Evolution From Its History 2-D Projections Via Deep Learning
,”
J. Fluid Mech.
,
875
, p.
R2
.10.1017/jfm.2019.545
32.
Zhang
,
H.
,
Zou
,
Z.
,
Li
,
Y.
,
Ye
,
J.
, and
Song
,
S.
,
2013
, “
Conjugate Heat Transfer Investigations of Turbine Vane Based on Transition Models
,”
Chin. J. Aeronaut.
,
26
(
4
), pp.
890
897
.10.1016/j.cja.2013.04.024
33.
Guo
,
Z.
,
Wang
,
Q.
,
Dong
,
P.
, and
Jiang
,
Y.
,
2020
, “
Aero-Thermal-Elastic Coupled Simulations of an Air-Cooled Turbine With an FDM Solver
,”
J. Phys.: Conf. Ser.
,
1600
(
1
), p.
012007
.10.1088/1742-6596/1600/1/012007
34.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA, Washington, D.C., Report No.
NAS 1.26:168015
.https://ntrs.nasa.gov/citations/19830020105
35.
Clark
,
E.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2018
, “
Sensor Selection With Cost Constraints for Dynamically Relevant Bases
,”
Phys. Rev. E
,
98
(
5
), p.
053307
.10.1109/JSEN.2020.2997298
36.
Manohar
,
K.
,
Brunton
,
B. W.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2018
, “
Data-Driven Sparse Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known Patterns
,”
IEEE Control Syst. Mag.
,
38
(
3
), pp.
63
86
.10.1109/MCS.2018.2810460
37.
Jayaraman
,
B.
,
Al Mamun
,
S. M. A.
, and
Lu
,
C.
,
2019
, “
Interplay of Sensor Quantity, Placement and System Dimension in POD-Based Sparse Reconstruction of Fluid Flows
,”
Fluids
,
4
(
2
), p.
109
.10.3390/fluids4020109
38.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.10.1007/s00332-015-9258-5
You do not currently have access to this content.