Abstract

Through careful experimentation, this paper focuses on the augmentation of the heat transfer coefficient by impregnating single and dual-feature cavity structures at the floor of the evaporator surface inside the multiloop pulsating heat pipe (MLPHP). Explanations of observed thermal behavior in the augmented loop are presented through the fluidic observations like the ability to produce bubbles due to phase change, ease in heat transport to the condenser through slug plug, and better replenishment path for condensed liquid to the evaporator. Results revealed that a dual-cavity performs better than a single-cavity inside the evaporator of the MLPHP. An array of isolated dimple cavity features performs better than the continuous tunnel and rectangular slot features in the single-cavity category inside the evaporator section. The most efficient structured surface with dual-features, i.e., tunnel-dimple combination inside the evaporator section. The thermal resistances of dimple single-feature cavity and tunnel-dimple dual-feature cavity evaporators are 45% and 73% lower than that of a smooth surface evaporator loop.

References

1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4,921,047.
2.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part A: Parametric Experimental Investigations
,”
Appl. Thermal Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
3.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
.10.1016/j.applthermaleng.2007.01.033
4.
Qu
,
J.
, and
Wang
,
Q.
,
2013
, “
Experimental Study on the Thermal Performance of Vertical Closed-Loop Oscillating Heat Pipes and Correlation Modeling
,”
Appl. Energy
,
112
, pp.
1154
1160
.10.1016/j.apenergy.2013.02.030
5.
Ebrahimi
,
M.
,
Shafii
,
M. B.
, and
Bijarchi
,
M. A.
,
2015
, “
Experimental Investigation of the Thermal Management of Flat-Plate Closed-Loop Pulsating Heat Pipes With Interconnecting Channels
,”
Appl. Therm. Eng.
,
90
, pp.
838
847
.10.1016/j.applthermaleng.2015.07.040
6.
Lim
,
J.
, and
Kim
,
S. J.
,
2018
, “
Fabrication and Experimental Evaluation of a Polymer-Based Flexible Pulsating Heat Pipe
,”
Energy Convers. Manage.
,
156
, pp.
358
364
.10.1016/j.enconman.2017.11.022
7.
Jang
,
D. S.
,
Kim
,
D.
,
Hong
,
S. H.
, and
Kim
,
Y.
,
2019
, “
Comparative Thermal Performance Evaluation Between Ultrathin Flat Plate Pulsating Heat Pipe and Graphite Sheet for Mobile Electronic Devices at Various Operating Conditions
,”
Appl. Therm. Eng.
,
149
, pp.
1427
1434
.10.1016/j.applthermaleng.2018.12.146
8.
Mehta
,
K.
,
Mehta
,
N.
, and
Patel
,
V.
,
2020
, “
Influence of the Channel Profile on the Thermal Resistance of Closed-Loop Flat-Plate Oscillating Heat Pipe
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
3
), pp. 1--12.10.1007/s40430-020-2213-x
9.
Aref
,
L.
,
Fallahzadeh
,
R.
,
Shabanian
,
S. R.
, and
Hosseinzadeh
,
M.
,
2021
, “
A Novel Dual-Diameter Closed-Loop Pulsating Heat Pipe for a Flat Plate Solar Collector
,”
Energy
,
230
, p.
120751
.10.1016/j.energy.2021.120751
10.
Alqahtani
,
A. A.
,
Edwardson
,
S.
,
Marengo
,
M.
, and
Bertola
,
V.
,
2022
, “
Performance of Flat-Plate, Flexible Polymeric Pulsating Heat Pipes at Different Bending Angles
,”
Appl. Therm. Eng.
,
216
, p.
118948
.10.1016/j.applthermaleng.2022.118948
11.
Li
,
S.
,
Pei
,
H.
,
Liu
,
D.
,
Shen
,
Y.
,
Tao
,
X.
, and
Gan
,
Z.
,
2023
, “
Visualization Study on the Flow Characteristics of a Nitrogen Pulsating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
143
, p.
106722
.10.1016/j.icheatmasstransfer.2023.106722
12.
Su
,
Z.
,
Hu
,
Y.
,
Yan
,
Y.
,
Chen
,
J.
,
Wu
,
X.
, and
Huang
,
J.
,
2024
, “
Study on the Multi-Factors Interaction of Annular Pulsating Heat Pipe Based on Response Surface Method and Temperature Curve Analysis
,”
Appl. Therm. Eng.
,
236
, p.
121531
.10.1016/j.applthermaleng.2023.121531
13.
Abela
,
M.
,
Mameli
,
M.
,
Filippeschi
,
S.
, and
Taft
,
B. S.
,
2024
, “
Innovative Experimental Approach for the Dynamic Multi-Variable Investigation of Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
236
, p.
121910
.10.1016/j.applthermaleng.2023.121910
14.
Dai
,
Y.
,
Zhang
,
R.
,
Qin
,
Z.
,
Liu
,
K.
,
Liu
,
C.
, and
Zhao
,
J.
,
2024
, “
Research on the Thermal Performance and Stability of Three-Dimensional Array Pulsating Heat Pipe for Active/Passive Coupled Thermal Management Application
,”
Appl. Therm. Eng.
,
245
, p.
122793
.10.1016/j.applthermaleng.2024.122793
15.
Chen
,
X.
,
Li
,
H.
,
Han
,
X.
, and
Liu
,
X.
,
2024
, “
Thermo-Hydrodynamic Characteristics of a Novel Flat-Plate Micro Pulsating Heat Pipe With Asymmetric Converging-Diverging Channels
,”
Int. Commun. Heat Mass Transfer
,
152
, p.
107282
.10.1016/j.icheatmasstransfer.2024.107282
16.
Lee
,
Y. J.
, and
Kim
,
S. J.
,
2024
, “
Experimental Investigation on the Effect of Transverse Grooves in a Channel on the Thermal Performance of a Flat-Plate Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
218
, p.
124759
.10.1016/j.ijheatmasstransfer.2023.124759
17.
Zhang
,
D.
,
Wang
,
L.
,
Xu
,
B.
,
Li
,
Q.
,
Wang
,
S.
, and
An
,
Z.
,
2024
, “
Experimental and Simulation Study on Flow Heat Transfer Characteristics of Flat Pulsating Heat Pipe With Wide and Narrow Interphase Channels
,”
Appl. Therm. Eng.
,
245
, p.
122806
.10.1016/j.applthermaleng.2024.122806
18.
Kumar
,
A.
,
Singh
,
S.
,
Kumar
,
R.
, and
Kumar Das
,
A.
,
2024
, “
Evaluation of Thermo-Fluidic Performance of Micro Pulsating Heat Pipe With and Without Evaporator Side Surface Structures
,”
Appl. Therm. Eng.
,
249
, p.
123470
.10.1016/j.applthermaleng.2024.123470
19.
Singh
,
S.
, and
Kumar Das
,
A.
,
2024
, “
Performance of Surface Structures in Enhancing Heat Transfer Rates of Miniaturized Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
257
, p.
124388
.10.1016/j.applthermaleng.2024.124388
20.
Nikolaenko
,
Y. E.
,
Solomakha
,
A. S.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
,
Kravets
,
V. Y.
,
Kozak
,
D. V.
, and
Pekur
,
D. V.
,
2024
, “
Experimental Investigation on the Thermal Performances of a New Design of Pulsating Heat Pipe With Two Condensers
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
031007
.10.1115/1.4064426
21.
Friz
,
W.
,
1935
, “
Berechnung des maximalvolumes von dampfblasen
,”
Phys. Z.
,
36
, pp.
379
384
.https://cir.nii.ac.jp/crid/1573668924962839808
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
23.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
.10.1016/j.ijheatmasstransfer.2015.05.091
You do not currently have access to this content.