Abstract

Enhancing the melting of phase change material (PCM) in a double tube latent heat storage system (LHSS) improves energy storage efficiency, accelerates heat absorption, and increases overall system performance. In this study, the melting behavior and heat transfer of PCMs using various pin fin length ratio are studied. The fin length ratios of 1, 2, 3, and 4 are investigated and compared with unfinned scheme. The model is validated by comparing the results with prior experimental results, and it is dependable and acceptable. The parameters, including liquid fraction (LF), temperature, heat transfer rate, and melting time (MT), are evaluated. Outcomes explain that incorporating fins with length ratio of 4 results in a substantial increase in overall liquid fraction and average temperature by 67% and 29%, respectively. Additionally, complete melting time decreased via 56% with a fin length ratio of 3 compared to an unfinned system. The total melting time decreased with fin insertion and was reduced by 61.5% when using a fin with length ratio of 4. Although the heat transfer rate declines, the highest values are observed at the beginning of the melting process. The study forecasts the liquid fraction and temperature distribution throughout the heat exchanger based on a detailed numerical analysis. The findings provide valuable insights into fin size and distribution, serving as a reference for future research and optimization of PCM energy storage systems.

References

1.
Srivastava
,
U.
, and
Sahoo
,
R. R.
,
2024
, “
Melting Behavior Effect of MXene Nanoenhanced Phase Change Material on Energy and Exergy Analysis of Double and Triplex Tube Latent Heat Thermal Energy Storage
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
12
), p.
122401
.10.1115/1.4065997
2.
Kanani
,
Y.
,
Karmakar
,
A.
, and
Acharya
,
S.
,
2021
, “
Phase-Change Process Inside a Small-Radii Cylinder Subjected to Cyclic Convective Boundary Conditions: A Numerical Study
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
10
), p.
102401
.10.1115/1.4052085
3.
El-Fakharany
,
M. K.
,
Abo-Samra
,
A.-E. A.
,
Abdelmaqsoud
,
A.
, and
Marzouk
,
S.
,
2024
, “
Enhanced Performance Assessment of an Integrated Evacuated Tube and Flat Plate Collector Solar Air Heater With Thermal Storage Material
,”
Appl. Therm. Eng.
,
243
, p.
122653
.10.1016/j.applthermaleng.2024.122653
4.
Abd Elbar
,
A. R.
,
Baz
,
F. B.
,
Marzouk
,
S.
,
Eldesoukey
,
A.
, and
Salem
,
A. M.
,
2025
, “
Analyzing Solar Still Performance With PV Electricity Storage: Energy, Exergy, Exergoeconomic, and Enviroeconomic Perspectives
,”
Desalination
,
597
, p.
118400
.10.1016/j.desal.2024.118400
5.
Al-Omari
,
S. A. B.
,
Mahmoud
,
F.
,
Qureshi
,
Z. A.
, and
Elnajjar
,
E.
,
2023
, “
The Impact of Different Fin Configurations and Design Parameters on the Performance of a Finned PCM Heat Sink
,”
Int. J. Thermofluids
,
20
, p.
100476
.10.1016/j.ijft.2023.100476
6.
Tian
,
L.-L.
,
Liu
,
X.
,
Chen
,
S.
, and
Shen
,
Z.-G.
,
2020
, “
Effect of Fin Material on PCM Melting in a Rectangular Enclosure
,”
Appl. Therm. Eng.
,
167
, p.
114764
.10.1016/j.applthermaleng.2019.114764
7.
Gürtürk
,
M.
, and
Kok
,
B.
,
2020
, “
A New Approach in the Design of Heat Transfer Fin for Melting and Solidification of PCM
,”
Int. J. Heat Mass Transfer
,
153
, p.
119671
.10.1016/j.ijheatmasstransfer.2020.119671
8.
Peng
,
B.
,
Qiu
,
M.
,
Xu
,
N.
,
Zhou
,
Y.
,
Sheng
,
W.
, and
Su
,
F.
,
2023
, “
Optimum Orthogonally Structured Fins in Charging Enhancement of Phase Change Materials (PCMs): PCMs' Thermophysical Properties Effects
,”
Int. J. Therm. Sci.
,
184
, p.
108005
.10.1016/j.ijthermalsci.2022.108005
9.
Uniyal
,
A.
,
Kumar
,
D.
, and
Prajapati
,
Y. K.
,
2024
, “
Melting and Heat Transfer Characteristics of Phase Change Material: A Comparative Study on Wire Mesh Finned Structure and Other Fin Configurations
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), p.
062403
.10.1115/1.4064732
10.
Rabienataj Darzi
,
A. A.
,
Jourabian
,
M.
, and
Farhadi
,
M.
,
2016
, “
Melting and Solidification of PCM Enhanced by Radial Conductive Fins and Nanoparticles in Cylindrical Annulus
,”
Energy Convers. Manage.
,
118
, pp.
253
263
.10.1016/j.enconman.2016.04.016
11.
Marzouk
,
S. A.
,
Aljabr
,
A.
,
Almehmadi
,
F. A.
,
Alqaed
,
S.
, and
Sharaf
,
M. A.
,
2023
, “
Numerical Study of Heat Transfer, Exergy Efficiency, and Friction Factor With Nanofluids in a Plate Heat Exchanger
,”
J. Therm. Anal. Calorim.
,
148
(
20
), pp.
11269
11281
.10.1007/s10973-023-12441-5
12.
Marzouk
,
S.
,
Aljabr
,
A.
,
Almehmadi
,
F. A.
, and
Sharaf
,
M. A.
,
2025
, “
Enhancing Heat Transfer in a Double-Tube Heat Exchanger Using Perforated Twisted Tape and Nanofluid
,”
J. Therm. Anal. Calorim.
,
150
, pp.
1
15
.10.1007/s10973-024-13930-x
13.
Baz
,
F.
,
Sharaf
,
M.
,
Aljabr
,
A.
,
Almehmadi
,
F. A.
, and
Marzouk
,
S.
,
2024
, “
Enhancing Photovoltaic/Thermal Performance With Perforated Tube Within Cooling Water Duct
,”
Clean Technol. Environ. Policy
,
27
, pp.
1
20
.10.1007/s10098-024-03003-w
14.
Marzouk
,
S.
,
Almehmadi
,
F. A.
,
Aljabr
,
A.
,
Alam
,
T.
,
Singh
,
T.
, and
Khargotra
,
R.
,
2024
, “
Effects of Extended Pin Fins on the Hydrothermal Performance of Double Pipe Heat Exchanger
,”
Therm. Sci. Eng. Prog.
,
55
, p.
102915
.10.1016/j.tsep.2024.102915
15.
Jahangiri
,
A.
, and
Ahmadi
,
O.
,
2019
, “
Numerical Investigation of Enhancement in Melting Process of PCM by Using Internal Fins
,”
J. Therm. Anal. Calorim.
,
137
(
6
), pp.
2073
2080
.10.1007/s10973-019-08098-8
16.
Deng
,
S.
,
Nie
,
C.
,
Wei
,
G.
, and
Ye
,
W.-B.
,
2019
, “
Improving the Melting Performance of a Horizontal Shell-Tube Latent-Heat Thermal Energy Storage Unit Using Local Enhanced Finned Tube
,”
Energy Build.
,
183
, pp.
161
173
.10.1016/j.enbuild.2018.11.018
17.
Liu
,
G.
,
Du
,
Z.
,
Xiao
,
T.
,
Guo
,
J.
,
Lu
,
L.
,
Yang
,
X.
, and
Hooman
,
K.
,
2022
, “
Design and Assessments on a Hybrid Pin Fin-Metal Foam Structure Towards Enhancing Melting Heat Transfer: An Experimental Study
,”
Int. J. Therm. Sci.
,
182
, p.
107809
.10.1016/j.ijthermalsci.2022.107809
18.
Qaiser
,
R.
,
Khan
,
M. M.
,
Khan
,
L. A.
, and
Irfan
,
M.
,
2021
, “
Melting Performance Enhancement of PCM Based Thermal Energy Storage System Using Multiple Tubes and Modified Shell Designs
,”
J. Energy Storage
,
33
, p.
102161
.10.1016/j.est.2020.102161
19.
Dmitruk
,
A.
,
Naplocha
,
K.
,
Kaczmar
,
J. W.
, and
Smykowski
,
D.
,
2020
, “
Pin-Fin Metal Alloy Structures Enhancing Heat Transfer in PCM-Based Heat Storage Units
,”
Heat Mass Transfer
,
56
(
7
), pp.
2265
2271
.10.1007/s00231-020-02861-6
20.
Dhaidan
,
N. S.
,
Hassan
,
A. F.
,
Rasheed Al-Gaheeshi
,
A. M.
,
Al-Mousawi
,
F. N.
, and
Homod
,
R. Z.
,
2023
, “
Experimental Investigation of Thermal Characteristics of Phase Change Material in Finned Heat Exchangers
,”
J. Energy Storage
,
71
, p.
108162
.10.1016/j.est.2023.108162
21.
He
,
F.
,
Yan
,
B.
,
Zou
,
J.
,
Hu
,
C.
,
Meng
,
X.
, and
Gao
,
W.
,
2023
, “
Experimental Evaluation of the Effect of Perforated Spiral Fins on the Thermal Performance of Latent Heat Storage Units
,”
J. Energy Storage
,
58
, p.
106359
.10.1016/j.est.2022.106359
22.
Liu
,
F.
, and
Zhang
,
G.
,
2023
, “
Study on Melting and Solidification Performances Improvement of Phase Change Material Using Novel Branch Fin Structure
,”
J. Energy Storage
,
63
, p.
107097
.10.1016/j.est.2023.107097
23.
Zhao
,
Y.
,
Xie
,
Y.
,
Song
,
J.
,
Guo
,
J.
,
Li
,
W.
, and
Deng
,
Z.
,
2025
, “
Heat Transfer Mechanism of Topologically-Optimised Fin Structures in Latent Heat Storage Units
,”
Int. J. Heat Mass Transfer
,
239
, p.
126438
.10.1016/j.ijheatmasstransfer.2024.126438
24.
Liu
,
C.
,
Bao
,
Y.
,
Li
,
B.
,
Lyu
,
P.
,
Liu
,
X.
, and
Rao
,
Z.
,
2025
, “
Experimental Study on Heat Transfer Enhancement and Flow Performance of Microencapsulated Phase Change Slurry in Microchannel With Different Rib Structures
,”
Int. J. Heat Mass Transfer
,
237
, p.
126437
.10.1016/j.ijheatmasstransfer.2024.126437
25.
Nie
,
C.
,
Deng
,
S.
, and
Liu
,
J.
,
2020
, “
Effects of Fins Arrangement and Parameters on the Consecutive Melting and Solidification of PCM in a Latent Heat Storage Unit
,”
J. Energy Storage
,
29
, p.
101319
.10.1016/j.est.2020.101319
26.
Moradian
,
A.
,
Ameri
,
M.
, and
Majidi
,
S.
,
2022
, “
Melting Expedition in Horizontal Triplex Tube Heat Exchangers Via Radial and Combined Radial-Axial Fins
,”
J. Energy Storage
,
56
, p.
106129
.10.1016/j.est.2022.106129
27.
Pu
,
L.
,
Zhang
,
S.
,
Xu
,
L.
, and
Li
,
Y.
,
2020
, “
Thermal Performance Optimization and Evaluation of a Radial Finned Shell-and-Tube Latent Heat Thermal Energy Storage Unit
,”
Appl. Therm. Eng.
,
166
, p.
114753
.10.1016/j.applthermaleng.2019.114753
28.
Sarani
,
I.
,
Payan
,
S.
,
Payan
,
A.
, and
Nada
,
S. A.
,
2020
, “
Enhancement of Energy Storage Capability in RT82 Phase Change Material Using Strips Fins and Metal-Oxide Based Nanoparticles
,”
J. Energy Storage
,
32
, p.
102009
.10.1016/j.est.2020.102009
29.
Zhang
,
F.
,
Lu
,
F.
,
Liang
,
B.
,
Zhu
,
Y.
,
Gou
,
H.
,
Xiao
,
K.
, and
He
,
Y.
,
2023
, “
Thermal Performance Analysis of a New Type of Branch-Fin Enhanced Battery Thermal Management PCM Module
,”
Renewable Energy
,
206
, pp.
1049
1063
.10.1016/j.renene.2023.02.083
30.
Li
,
J.
,
Abdulghani
,
Z. R.
,
Alghamdi
,
M. N.
,
Sharma
,
K.
,
Niyas
,
H.
,
Moria
,
H.
, and
Arsalanloo
,
A.
,
2023
, “
Effect of Twisted Fins on the Melting Performance of PCM in a Latent Heat Thermal Energy Storage System in Vertical and Horizontal Orientations: Energy and Exergy Analysis
,”
Appl. Therm. Eng.
,
219
, p.
119489
.10.1016/j.applthermaleng.2022.119489
31.
Abdulateef
,
A. M.
,
Jaszczur
,
M.
,
Hassan
,
Q.
,
Anish
,
R.
,
Niyas
,
H.
,
Sopian
,
K.
, and
Abdulateef
,
J.
,
2021
, “
Enhancing the Melting of Phase Change Material Using a Fins–Nanoparticle Combination in a Triplex Tube Heat Exchanger
,”
J. Energy Storage
,
35
, p.
102227
.10.1016/j.est.2020.102227
32.
Karami
,
R.
, and
Kamkari
,
B.
,
2020
, “
Experimental Investigation of the Effect of Perforated Fins on Thermal Performance Enhancement of Vertical Shell and Tube Latent Heat Energy Storage Systems
,”
Energy Convers. Manage.
,
210
, p.
112679
.10.1016/j.enconman.2020.112679
33.
Zhang
,
S.
,
Pu
,
L.
,
Xu
,
L.
,
Liu
,
R.
, and
Li
,
Y.
,
2020
, “
Melting Performance Analysis of Phase Change Materials in Different Finned Thermal Energy Storage
,”
Appl. Therm. Eng.
,
176
, p.
115425
.10.1016/j.applthermaleng.2020.115425
34.
Kazemi
,
M.
,
Hosseini
,
M. J.
,
Ranjbar
,
A. A.
, and
Bahrampoury
,
R.
,
2018
, “
Improvement of Longitudinal Fins Configuration in Latent Heat Storage Systems
,”
Renewable Energy
,
116
, pp.
447
457
.10.1016/j.renene.2017.10.006
35.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2015
, “
Effects of Natural Convection on Latent Heat Storage Performance of Salt in a Horizontal Concentric Tube
,”
Appl. Energy
,
143
, pp.
38
46
.10.1016/j.apenergy.2015.01.008
36.
Liu
,
Y. K.
, and
Tao
,
Y. B.
,
2022
, “
Experimental and Numerical Investigation of Longitudinal and Annular Finned Latent Heat Thermal Energy Storage Unit
,”
Sol. Energy
,
243
, pp.
410
420
.10.1016/j.solener.2022.08.023
37.
Zhang
,
T.
,
Lu
,
G.
, and
Zhai
,
X.
,
2021
, “
Design and Experimental Investigation of a Novel Thermal Energy Storage Unit With Phase Change Material
,”
Energy Rep.
,
7
, pp.
1818
1827
.10.1016/j.egyr.2021.03.029
38.
Safari
,
V.
,
Abolghasemi
,
H.
,
Darvishvand
,
L.
, and
Kamkari
,
B.
,
2021
, “
Thermal Performance Investigation of Concentric and Eccentric Shell and Tube Heat Exchangers With Different Fin Configurations Containing Phase Change Material
,”
J. Energy Storage
,
37
, p.
102458
.10.1016/j.est.2021.102458
39.
Yang
,
X.
,
Guo
,
J.
,
Yang
,
B.
,
Cheng
,
H.
,
Wei
,
P.
, and
He
,
Y.-L.
,
2020
, “
Design of Non-Uniformly Distributed Annular Fins for a Shell-and-Tube Thermal Energy Storage Unit
,”
Appl. Energy
,
279
, p.
115772
.10.1016/j.apenergy.2020.115772
40.
Mehta
,
D. S.
,
Vaghela
,
B.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2020
, “
Thermal Performance Augmentation in Latent Heat Storage Unit Using Spiral Fin: An Experimental Analysis
,”
J. Energy Storage
,
31
, p.
101776
.10.1016/j.est.2020.101776
41.
Ul Hasnain
,
F.
,
Irfan
,
M.
,
Khan
,
M. M.
,
Khan
,
L. A.
, and
Ahmed
,
H. F.
,
2021
, “
Melting Performance Enhancement of a Phase Change Material Using Branched Fins and Nanoparticles for Energy Storage Applications
,”
J. Energy Storage
,
38
, p.
102513
.10.1016/j.est.2021.102513
42.
Cédric
,
L. B.
,
Anas
,
M.
,
Ryad
,
B.
, and
Alain
,
S.
,
2024
, “
Effect of Biot and Stefan Numbers of a Phase Change Material Submitted to Cyclic Robin Conditions on the Heat Flux Discharge
,”
Int. J. Therm. Sci.
,
205
, p.
109280
.10.1016/j.ijthermalsci.2024.109280
43.
Xue
,
X.
,
Lv
,
L.
,
Zhang
,
A.
,
Huaan
,
L.
,
Wu
,
F.
, and
Zhou
,
H.
,
2025
, “
Numerical Simulation of Transient Thermal Stresses in Medium- and High-Temperature Latent Heat Storage Systems With Different Fins: Incorporation of Experimental Stress Cracking
,”
Appl. Therm. Eng.
,
258
, p.
124702
.10.1016/j.applthermaleng.2024.124702
44.
Narges Moghadam
,
F.
,
Izadpanah
,
E.
,
Shekari
,
Y.
, and
Amini
,
Y.
,
2024
, “
Experimental Evaluation of Shell Geometry Impact on Thermal and Exergy Performance in Helical Coiled Tube Heat Exchanger With Phase Change Material
,”
J. Energy Storage
,
83
, p.
110790
.10.1016/j.est.2024.110790
45.
Mahdi
,
M. S.
,
Hasan
,
A. F.
,
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Khadom
,
A. A.
,
Karim
,
A. M. E. A.
, and
Sharif
,
A. O.
,
2019
, “
Numerical Study and Experimental Validation of the Effects of Orientation and Configuration on Melting in a Latent Heat Thermal Storage Unit
,”
J. Energy Storage
,
23
, pp.
456
468
.10.1016/j.est.2019.04.013
46.
Mahdi
,
M. S.
,
Mahood
,
H. B.
,
Khadom
,
A. A.
,
Campbell
,
A. N.
,
Hasan
,
M.
, and
Sharif
,
A. O.
,
2019
, “
Experimental Investigation of the Thermal Performance of a Helical Coil Latent Heat Thermal Energy Storage for Solar Energy Applications
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
287
298
.10.1016/j.tsep.2019.02.010
47.
Gao
,
X.
,
Huang
,
X.
,
Wei
,
P.
,
Yang
,
X.
, and
Boetcher
,
S. K. S.
,
2024
, “
Effect of Porosity Gradient on the Solidification of Paraffin in a Thermal Energy Storage Tank Filled With Metal Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), p.
062401
.10.1115/1.4064828
48.
Sharaf
,
M. A.
,
Marzouk
,
S. A.
,
Aljabr
,
A.
,
Almehmadi
,
F. A.
,
Kaood
,
A.
, and
Alqaed
,
S.
,
2024
, “
Heat Transfer Enhancement in a Double-Pipe Helical Heat Exchanger Using Spring Wire Insert and Nanofluid
,”
J. Therm. Anal. Calorim.
,
149
(
10
), pp.
5017
5033
.10.1007/s10973-024-12992-1
49.
Sharaf
,
M. A.
,
Marzouk
,
S. A.
,
Aljabr
,
A.
,
Almehmadi
,
F. A.
,
Alam
,
T.
, and
Teklemariyem
,
D. A.
,
2024
, “
Effects of Multi-Spring Wires on Hydrothermal Performance of Double Tube Heat Exchanger
,”
Case Stud. Therm. Eng.
,
60
, p.
104689
.10.1016/j.csite.2024.104689
50.
Raut
,
D.
,
Lanjewar
,
S.
, and
Kalamkar
,
V. R.
,
2022
, “
Effect of Geometrical and Operational Parameters on Paraffin's Melting Performance in Helical Coiled Latent Heat Storage for Solar Application: A Numerical Study
,”
Int. J. Therm. Sci.
,
176
, p.
107509
.10.1016/j.ijthermalsci.2022.107509
51.
Zhang
,
L.
, and
Zhou
,
G.
,
2024
, “
Optimal Eccentricity and Exergy Analyses of a Horizontal Double-Tube Latent Heat Storage Unit for Melting Processes
,”
J. Energy Storage
,
88
, p.
111647
.10.1016/j.est.2024.111647
52.
Eslamnezhad
,
H.
, and
Rahimi
,
A. B.
,
2017
, “
Enhance Heat Transfer for Phase-Change Materials in Triplex Tube Heat Exchanger With Selected Arrangements of Fins
,”
Appl. Therm. Eng.
,
113
, pp.
813
821
.10.1016/j.applthermaleng.2016.11.067
You do not currently have access to this content.