Abstract

A local thermal nonequilibrium analysis was made to assess the potential use of bi-disperse porous walls for a transpiration cooling system. A three-energy equation model successfully used for the transient thermal analysis of bi-disperse packed bed thermocline storage systems was introduced to investigate various heat transfer aspects of transpiration cooling through a bi-disperse porous wall made of combination of large and small particles. Three independent energy balance equations, namely, the energy equation of the coolant gas phase, that of the solid phase of large particles, and that of small particles are coupled with one another to obtain a set of exact expressions for all three individual temperature distributions across the porous wall for given thermal boundary conditions of the third kind. It has been revealed that the solid wall temperature of the bi-disperse porous wall stays lower than that of the monodisperse porous wall in the high Peclet number range, resulting in a higher overall cooling efficiency for a given blowing flowrate. Furthermore, the analysis provides a suitable range of the Peclet number, under which the transpiration cooling should be operated to suppress excessive heat loss to the coolant reservoir at the same time to ensure a high overall cooling efficiency.

References

1.
Odentha
,
C.
,
Klasing
,
F.
, and
Bauer
,
T.
,
2019
, “
A Three-Equation Thermocline Thermal Energy Storage Model for Bidisperse Packed Beds
,”
Sol. Energy
,
191
, pp.
410
419
.10.1016/j.solener.2019.09.005
2.
Yi
,
Y.
, and
Nakayama
,
A.
,
2024
, “
A Three-Energy Equation Model and Estimation of Effective Thermal Properties for Transient Analysis of Bi-Disperse Packed Bed Thermocline Storage System
,”
Renewable Energy
,
222
, p.
119915
.10.1016/j.renene.2023.119915
3.
Yi
,
Y.
, and
Nakayama
,
A.
,
2023
, “
An Analytical Study on Transient Thermal Behavior of a Packed-Bed Molten Salt Thermocline Thermal Storage
,”
Int. J. Heat Mass Transfer
,
209
, p.
124095
.10.1016/j.ijheatmasstransfer.2023.124095
4.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2004
, “
Forced Convection in a Bi-Disperse Porous Medium Channel: A Conjugate Problem
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5375
5380
.10.1016/j.ijheatmasstransfer.2004.07.018
5.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2005
, “
A Two-Velocity Two-Temperature Model for a Bidispersed Porous Medium: Forced Convection in a Channel
,”
Transp. Porous Media
,
59
(
3
), pp.
325
339
.10.1007/s11242-004-1685-y
6.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2005
, “
Heat Transfer in Bidisperse Porous Media
,”
Transport Phenomena in Porous Media III
, Elsevier, Kidlington, Oxford, UK, pp.
34
59
.
7.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.10.1016/0017-9310(94)90219-4
8.
Lee
,
D. Y.
, and
Vafai
,
K.
,
1999
, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
423
435
.10.1016/S0017-9310(98)00185-9
9.
Quintard
,
M.
, and
Whitaker
,
S.
,
1993
, “
One and Two Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
465
.10.1016/S0065-2717(08)70009-1
10.
Nakayama
,
A.
,
Kuwahara
,
F.
,
Sugiyama
,
M.
, and
Xu
,
G.-L.
,
2001
, “
A Two-Energy Equation Model for Conduction and Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4375
4379
.10.1016/S0017-9310(01)00069-2
11.
Polezhaev
,
J.
,
1997
, “
The Transpiration Cooling for Blades of High Temperatures Gas Turbine
,”
Energy Convers. Manage.
,
38
(
10–13
), pp.
1123
1133
.10.1016/S0196-8904(96)00142-2
12.
Song
,
K. D.
,
Choi
,
S. H.
, and
Scotti
,
S. J.
,
2006
, “
Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes
,”
J. Propul. Power
,
22
(
1
), pp.
96
102
.10.2514/1.11300
13.
Zhu
,
Y.
,
Jiang
,
P.
,
Sun
,
J.
, and
Xiong
,
Y.
,
2013
, “
Injector Head Transpiration Cooling Coupled With Combustion in H2/O2 Subscale Thrust Chamber
,”
J. Thermophys. Heat Transfer
,
27
(
1
), pp.
42
51
.10.2514/1.T3872
14.
Leontiev
,
A.
,
Saveliev
,
A.
,
Kichatov
,
B.
,
Kiverin
,
A.
,
Korshunov
,
A.
, and
Sudakov
,
V.
,
2019
, “
Effect of Gaseous Coolant Temperature on the Transpiration Cooling for Porous Wall in the Supersonic Flow
,”
Int. J. Heat Mass Transfer
,
142
, p.
118433
.10.1016/j.ijheatmasstransfer.2019.118433
15.
Zhang
,
W.
,
Yi
,
Y.
,
Bai
,
X.
, and
Nakayama
,
A.
,
2020
, “
A Local Thermal Non-Equilibrium Analysis for Convective and Radiative Heat Transfer in Gaseous Transpiration Cooling Through a Porous Wall
,”
Int. J. Heat Mass Transfer
,
162
, p.
120389
.10.1016/j.ijheatmasstransfer.2020.120389
16.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
17.
Liu
,
J.
,
Sano
,
Y.
, and
Nakayama
,
A.
,
2009
, “
A Simple Mathematical Model for Determining the Equivalent Permeability of Fractured Porous Media
,”
Int. Commun. Heat Mass Transfer
,
36
(
3
), pp.
220
224
.10.1016/j.icheatmasstransfer.2008.11.010
18.
Sano
,
Y.
,
Noguchi
,
K.
, and
Kuroiwa
,
T.
,
2009
, “
An Experimental Investigation Into the Effective Permeability of Porous Media Whose Matrices Are Composed of Obstacles of Different Sizes
,”
Open Transp. Phenom. J.
,
1
(
1
), pp.
15
19
.10.2174/1877729500901010015
19.
Yang
,
C.
,
Xu
,
H.
, and
Nakayama
,
A.
,
2020
, “
Turbulent Heat Transfer Analysis of Silicon Carbide Ceramic Foam as a Solar Volumetric Receiver
,”
Foams - Emerging Technologies
,
H.
Xu
,
C.
Yang
, and
D.
Jing
, eds.,
IntechOpen
, London, UK.
20.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1995
, “
A Lumped Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
2
), pp.
264
269
.10.1115/1.2822515
21.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gorden and Beach Science Publishers, Inc
.,
New York
.
22.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
,
2001
, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1153
1159
.10.1016/S0017-9310(00)00166-6
23.
von Wolfersdorf
,
J.
,
2005
, “
Effect of Coolant Side Heat Transfer on Transpiration Cooling
,”
Heat Mass Transfer
,
41
(
4
), pp.
327
337
.10.1007/s00231-004-0549-x
24.
Liu
,
Y.-Q.
,
Xiong
,
Y.-B.
,
Jiang
,
P.-X.
,
Wang
,
Y.-P.
, and
Sun
,
J.-G.
,
2013
, “
Effects of Local geometry and Boundary Condition Variations on Transpiration Cooling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
362
372
.10.1016/j.ijheatmasstransfer.2013.02.075
25.
Bai
,
X.
,
Yi
,
Y.
,
Liu
,
C.
,
Zhang
,
W.
, and
Nakayama
,
A.
,
2021
, “
A Simple Conjugate Analysis and Its Comparison With Experiment for Heat Transfer Problems Associated With Hot Gas Flows in a Partially Transpiration-Cooled Channel
,”
Int. J. Heat Mass Transfer
,
165
, p.
120729
.10.1016/j.ijheatmasstransfer.2020.120729
You do not currently have access to this content.