Graphical Abstract Figure

Schematic of the energy and entropy balances for the TR cell and the receiver.

Graphical Abstract Figure

Schematic of the energy and entropy balances for the TR cell and the receiver.

Close modal

Abstract

In this study, entropic analysis is combined with the detailed balance model to determine the maximum output power of thermoradiative (TR) cells, which are semiconductor devices that generate electric power from a heat source that emits photons to a cold reservoir. Previous studies used different models without addressing their interconnections and inherent assumptions. This work unifies these models by considering the modified Bose–Einstein distribution of photons and reveals the underlying relationship between different models. The findings provide useful insights on the application and optimization of emissive power generation devices for harvesting low-grade heat and space power generation.

References

1.
Byrnes
,
S. J.
,
Blanchard
,
R.
, and
Capasso
,
F.
,
2014
, “
Harvesting Renewable Energy From Earth's Mid-Infrared Emissions
,”
Proc. Natl. Acad. Sci. (PNAS)
,
111
(
11
), pp.
3927
3932
.10.1073/pnas.1402036111
2.
Tervo
,
E. J.
,
Bagherisereshki
,
E.
, and
Zhang
,
Z. M.
,
2018
, “
Near-Field Radiative Thermoelectric Energy Converters: A Review
,”
Front. Energy
,
12
(
1
), pp.
5
21
.10.1007/s11708-017-0517-z
3.
Zhao
,
B.
, and
Fan
,
S.
,
2020
, “
Chemical Potential of Photons and Its Implications for Controlling Radiative Heat Transfer
,”
Annu. Rev. Heat Transfer
,
23
, pp.
397
431
.10.1615/AnnualRevHeatTransfer.2020032934
4.
Strandberg
,
R.
,
2015
, “
Theoretical Efficiency Limits for Thermoradiative Energy Conversion
,”
J. Appl. Phys.
,
117
(
5
), p.
055105
.10.1063/1.4907392
5.
Santhanam
,
P.
, and
Fan
,
S.
,
2016
, “
Thermal-to-Electrical Energy Conversion by Diodes Under Negative Illumination
,”
Phys. Rev. B
,
93
(
16
), p.
161410(R)
.10.1103/PhysRevB.93.161410
6.
Hsu
,
W.-C.
,
Tong
,
J. K.
,
Liao
,
B.
,
Huang
,
Y.
,
Boriskina
,
S. V.
, and
Chen
,
G.
,
2016
, “
Entropic and Near-Field Improvements of Thermoradiative Cells
,”
Sci. Rep.
,
6
(
1
), p.
34837
.10.1038/srep34837
7.
Lin
,
C.
,
Wang
,
B.
,
Teo
,
K. H.
, and
Zhang
,
Z. M.
,
2017
, “
Near-Field Enhancement of Thermoradiative Devices
,”
J. Appl. Phys.
,
122
(
14
), p.
143102
.10.1063/1.5007036
8.
Lin
,
C.
,
Wang
,
B.
,
Teo
,
K. H.
, and
Zhang
,
Z. M.
,
2017
, “
Performance Comparison Between Photovoltaic and Thermoradiative Devices
,”
J. Appl. Phys.
,
122
(
24
), p.
243103
.10.1063/1.5004651
9.
Zhang
,
X.
,
Ang
,
Y. S.
,
Chen
,
J. C.
, and
Ang
,
L. K.
,
2019
, “
Design of an InSb Thermoradiative System for Harvesting Low-Grade Waste Heat
,”
Opt. Lett.
,
44
(
13
), pp.
3354
3357
.10.1364/OL.44.003354
10.
Deppe
,
T.
, and
Munday
,
J. N.
,
2020
, “
Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling With Deep Space
,”
ACS Photonics
,
7
(
1
), pp.
1
9
.10.1021/acsphotonics.9b00679
11.
Wang
,
B.
,
Lin
,
C.
,
Teo
,
K. H.
, and
Zhang
,
Z. M.
,
2017
, “
Thermoradiative Device Enhanced by Near-Field Coupled Structures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
196
, pp.
10
16
.10.1016/j.jqsrt.2017.03.038
12.
Ghanekar
,
A.
,
Tian
,
Y. P.
,
Liu
,
X. J.
, and
Zheng
,
Y.
,
2019
, “
Performance Enhancement of Near-Field Thermoradiative Devices Using Hyperbolic Metamaterials
,”
J. Photonics Energy
,
9
(
3
), p.
032706
.10.1117/1.JPE.9.032706
13.
Feng
,
D.
,
Ruan
,
X.
,
Yee
,
S. K.
, and
Zhang
,
Z. M.
,
2022
, “
Thermoradiative Devices Enabled by Hyperbolic Phonon Polaritons at Nanoscales
,”
Nano Energy
,
103
(
Part A
), p.
107831
.10.1016/j.nanoen.2022.107831
14.
Ono
,
M.
,
Santhanam
,
P.
,
Li
,
W.
,
Zhao
,
B.
, and
Fan
,
S.
,
2019
, “
Experimental Demonstration of Energy Harvesting From the Sky Using the Negative Illumination Effect of a Semiconductor Photodiode
,”
Appl. Phys. Lett.
,
114
(
16
), p.
161102
.10.1063/1.5089783
15.
Wang
,
J.
,
Chen
,
C. H.
,
Bonner
,
R.
, and
Anderson
,
W. G.
,
2019
, “
Thermo-Radiative Cell—A New Waste Heat Recovery Technology for Space Power Applications
,”
AIAA
Paper No. 2019-3977.10.2514/6.2019-3977
16.
Nielsen
,
M. P.
,
Pusch
,
A.
,
Sazzad
,
M. H.
,
Pearce
,
P. M.
,
Reece
,
P. J.
, and
Ekins-Daukes
,
N. J.
,
2022
, “
Thermoradiative Power Conversion From HgCdTe Photodiodes and Their Current–Voltage Characteristics
,”
ACS Photonics
,
9
(
5
), pp.
1535
1540
.10.1021/acsphotonics.2c00223
17.
Buddhiraju
,
S.
,
Santhanam
,
P.
, and
Fan
,
S.
,
2018
, “
Thermodynamic Limits of Energy Harvesting From Outgoing Thermal Radiation
,”
Proc. Natl. Acad. Sci. (PNAS)
,
115
(
16
), pp.
E3609
E3615
.10.1073/pnas.1717595115
18.
Shockley
,
W.
, and
Queisser
,
H. J.
,
1961
, “
Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
,”
J. Appl. Phys.
,
32
(
3
), pp.
510
519
.10.1063/1.1736034
19.
Landsberg
,
P. T.
, and
Tonge
,
G.
,
1980
, “
Thermodynamic Energy Conversion Efficiencies
,”
J. Appl. Phys.
,
51
(
7
), pp.
R1
R20
.10.1063/1.328187
20.
Zhang
,
Z. M.
,
2020
,
Nano/Microscale Heat Transfer
, 2nd ed.,
Springer Nature
,
Cham, Switzerland
.
21.
Zhang
,
Z. M.
, and
Basu
,
S.
,
2007
, “
Entropy Flow and Generation in Radiative Transfer Between Surfaces
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
702
712
.10.1016/j.ijheatmasstransfer.2006.07.009
22.
Würfel
,
P.
,
1982
, “
The Chemical Potential of Radiation
,”
J. Phys. C: Solid State Phys.
,
15
, pp.
3967
3985
.10.1088/0022-3719/15/18/012
23.
Pusch
,
A.
,
Gordon
,
J. M.
,
Mellor
,
A.
,
Krich
,
J. J.
, and
Ekins-Daukes
,
N. J.
,
2019
, “
Fundamental Efficiency Bounds for the Conversion of a Radiative Heat Engine's Own Emission Into Work
,”
Phys. Rev. Appl.
,
12
(
6
), p.
064018
.10.1103/PhysRevApplied.12.064018
24.
Fernández
,
J. J.
,
2019
, “
Theoretical Optimization of the Working Properties of Spatial Thermoradiative Cells Using the Carnot Efficiency
,”
J. Appl. Phys.
,
125
(
10
), p.
103101
.10.1063/1.5079295
25.
Fernández
,
J. J.
,
2021
, “
Analysis of Irreversible Thermodynamic Losses in Emissive-Energy Harvesters Based on Photon Beams
,”
IEEE J. Photovolt.
,
11
, pp.
437
441
.10.1109/JPHOTOV.2021.3053157
26.
Li
,
J.
, and
Chen
,
L. G.
,
2021
, “
Exergoeconomic Performance Optimization of the Space Thermoradiative Cell
,”
Eur. Phys. J. Plus
,
136
, p.
644
.10.1140/epjp/s13360-021-01638-y
27.
Martí
,
A.
, and
Araujo
,
G. L.
,
1996
, “
Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems
,”
Sol. Energy Mater. Sol. Cells
,
43
(
2
), pp.
203
222
.10.1016/0927-0248(96)00015-3
28.
Green
,
M.
,
2003
,
Third Generation Photovoltaics: Advanced Solar Energy Conversion
,
Springer-Verlag
,
Berlin, Germany
.
29.
Park
,
Y.
,
Zhao
,
B.
, and
Fan
,
S.
,
2022
, “
Reaching the Ultimate Efficiency of Solar Energy Harvesting With a Nonreciprocal Multijunction Solar Cell
,”
Nano Lett.
,
22
(
1
), pp.
448
452
.10.1021/acs.nanolett.1c04288
30.
Tervo
,
E. J.
,
Callahan
,
W. A.
,
Toberer
,
E. S.
,
Steiner
,
M. A.
, and
Ferguson
,
A. J.
,
2020
, “
Solar Thermoradiative-Photovoltaic Energy Conversion
,”
Cell Rep. Phys. Sci.
,
1
(
12
), p.
100258
.10.1016/j.xcrp.2020.100258
31.
Fernández
,
J. J.
,
2017
, “
Thermoradiative Energy Conversion With Quasi-Fermi Level Variations
,”
IEEE Trans. Electron Devices
,
64
, pp.
250
255
.10.1109/TED.2016.2627605
32.
Ye
,
Z. L.
,
Peng
,
W. L.
,
Su
,
S. H.
, and
Chen
,
J. C.
,
2018
, “
Intermediate Band Thermoradiative Cells
,”
IEEE Trans. Electron Devices
,
65
(
12
), pp.
5428
5433
.10.1109/TED.2018.2873581
33.
Feng
,
D.
,
Tervo
,
E. J.
,
Vasileska
,
D.
,
Yee
,
S. K.
,
Rohatgi
,
A.
, and
Zhang
,
Z. M.
,
2021
, “
Spatial Profiles of Photon Chemical Potential in Near-Field Thermophotovoltaic Cells
,”
J. Appl. Phys.
,
129
(
21
), p.
213101
.10.1063/5.0047241
34.
Li
,
B.
,
Cheng
,
Q.
,
Song
,
J.
,
Zhou
,
K.
,
Lu
,
L.
,
Luo
,
Z.
, and
Zhuo
,
X.
,
2021
, “
Thermodynamic Bounds of Work and Efficiency in Near-Field Thermoradiative Systems
,”
Int. J. Heat Mass Transfer
,
180
, p.
121807
.10.1016/j.ijheatmasstransfer.2021.121807
35.
Shi
,
Y.
,
Han
,
S.
, and
Fan
,
S.
,
2017
, “
Optical Circulation and Isolation Based on Indirect Photonic Transitions of Guided Resonance Modes
,”
ACS Photonics
,
4
(
7
), pp.
1639
1645
.10.1021/acsphotonics.7b00420
36.
Vurgaftman
,
I.
, and
Meyer
,
J. R.
,
2023
, “
Simple Model of Power Generation in Thermoradiative Devices Including Realistic Nonradiative Processes
,”
APL Energy
,
1
(
3
), p.
036111
.10.1063/5.0181036
37.
Shibuya
,
H.
,
Nagumo
,
N.
,
Kumagai
,
K.
, and
Sakurai
,
A.
,
2022
, “
Fundamental Study on Thermoradiative Energy Conversion for Space Applications
,”
JSME J. Therm. Sci. Technol.
,
17
(
2
), p. 22–00051.10.1299/jtst.22-00051
You do not currently have access to this content.