Abstract

The highly corrosive environment inside a supercritical water-cooled reactor (SCWR) places stringent demands on the fuel rod cladding material, particularly requiring it to have strong corrosion resistance. However, within a refueling cycle, an oxide layer is growing on the surface of the fuel rods. In any case, the heat transfer to water under supercritical pressure conditions (pcr=220.64bar,Tcr=373.95°C) is an overly complex phenomenon, since the thermophysical properties of the fluid show drastic variations with respect to the temperature around the pseudo-critical temperature. An increase in the surface roughness height has an impact on the heat transfer. To provide insight into the effect of surface roughness on heat transfer an experimental database, using the surrogate fluid R134a (pcr=40.59bar,Tcr=101.06°C), covering a range of flow conditions is established. The database consists of reference data, obtained in a conventional hydraulic tube and of data obtained in a tube with an artificially roughened inner surface. In this work, the impact of the surface roughness on heat transfer is evaluated, by comparing the results obtained in the smooth tube, to the results obtained in the tube with rough inner surface. Heat transfer is enhanced when the Reynolds number is large enough and heat transfer deterioration can be suppressed or shifted to larger bulk enthalpy, due to the roughness. Furthermore, existing empirical correlations are assessed against the newly generated experimental database. It is concluded that none of the available correlations satisfactory predicts the experimental data over the entire range of Reynolds numbers, surface roughness, and wall-to-bulk temperature ratios.

References

1.
Cohen
,
P.
,
1979
, “
The Chemistry of Water and Solutions at High Temperatures for Application to Corrosion in Power Systems
,”
Westinghouse Electric Corporation, Advanced Reactor Division
,
Madison, PA
.
2.
Pioro
,
I.
, and
Duffey
,
R.
,
2005
, “
Experimental Heat Transfer in Supercritical Water Flowing Inside Channels (Survey)
,”
Nucl. Eng. Des.
,
235
(
22
), pp.
2407
2430
.10.1016/j.nucengdes.2005.05.034
3.
Feuerstein
,
F.
,
2019
, “
Investigation of Heat Transfer Near the Critical Point of R134a
,” Ph.D. thesis,
Karlsruhe Institute of Technology
,
Karlsruhe, Germany
.
4.
Zhang
,
S.
,
Gu
,
H.
,
Cheng
,
X.
, and
Xiong
,
Z.
,
2014
, “
Experimental Study on Heat Transfer of Supercritical Freon Flowing Upward in a Circular Tube
,”
Nucl. Eng. Des.
,
280
, pp.
305
315
.10.1016/j.nucengdes.2014.09.017
5.
Richards
,
G.
,
Harvel
,
G.
,
Pioro
,
I.
,
Shelegov
,
A.
, and
Kirillov
,
P.
,
2013
, “
Heat Transfer Profiles of Vertical, Bare 7-Element Bundle Cooled With Supercritical Freon R-12
,”
Nucl. Eng. Des.
,
264
, pp.
246
256
.10.1016/j.nucengdes.2013.02.019
6.
Bae
,
Y.
,
Kim
,
H.
, and
Kang
,
D.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
7.
Kim
,
D.
, and
Kim
,
M.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
8.
Kline
,
N.
,
Feuerstein
,
F.
, and
Tavoularis
,
S.
,
2018
, “
Onset of Heat Transfer Deterioration in Vertical Pipe Flows of CO2 at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1056
1068
.10.1016/j.ijheatmasstransfer.2017.11.039
9.
Vasic
,
A.
,
Beuthe
,
T.
,
Zahlan
,
H.
,
Nava-Dominguez
,
A.
, and
Wang
,
D.
,
2023
, “
State of the Art Report on Heat Transfer at Supercritical Pressures
,”
Canadian Nuclear Laboratories
, Chalk River, ON, Canada.
10.
Cook
,
R.
,
1984
, “
Methane Heat Transfer Investigation Technical Progress Narrative
,”
Rockwell International Corporation
, Rocketdyne Division, Canoga Park, CA, Report No. ASR84-72.
11.
Ambrosini
,
W.
,
Pucciarelli
,
A.
, and
Borroni
,
I.
,
2015
, “
A Methodology for Including Wall Roughness Effects in k-Epsilon Low-Reynolds Turbulence Models—Part I and Part II
,”
Nucl. Eng. Des.
,
286
, pp.
175
194
.10.1016/j.nucengdes.2015.01.008
12.
Copping
,
A. W.
, and
Yaras
,
M. I.
,
2022
, “
Convective Heat Transfer at Supercritical Pressure in the Presence of Surface Roughness—A Literature Review
,”
Department of Mechanical Aerospace Engineering, Carleton University
,
Ottawa, ON, Canada
.
13.
Touba
,
R.
, and
McFadden
,
P.
,
1966
, “
Combined Turbulent Convection Heat Transfer to Near Critical Water
,”
Atomic Energy Commission
,
Lafayette, IN
, Report No. C00-1177-18.
14.
Herkenrath
,
H.
,
1967
, “
Wärmeübergang an Wasser Bei Erzwungener Strömung im Druckbereich Von 140 Bis 250 Bar
,”
Europäische Atomgemeinschat, EURATOM
, Ispra, Italy (in German).
15.
Tanaka
,
H.
,
Nishiwaki
,
N.
,
Hirata
,
M.
, and
Tsuge
,
A.
,
1971
, “
Forced Convection Heat Transfer to Fluid Near Critical Point Flowing in Circular Tube
,”
Int. J. Heat Mass Transfer
, 14(6), pp.
739
750
.10.1016/0017-9310(71)90104-9
16.
Niino
,
M.
,
Suzuki
,
A.
,
Kumakawa
,
A.
,
Sakamoto
,
H.
, and
Sasaki
,
M.
,
1979
, “
Heat Transfer Characteristics of Liquid Hydrogen at Supercritical Pressure
,”
National Aerospace Laboratory of Japan
, Chofu-shi, Tokyo, Japan.
17.
Chen
,
J.
,
Yang
,
S.
,
Zhao
,
R.
, and
Cheng
,
W.-L.
,
2022
, “
Experimental Study on the Effect of Wall Roughness on Heat Transfer Characteristics of Supercritical Carbon Dioxide in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
196
, p.
123258
.10.1016/j.ijheatmasstransfer.2022.123258
18.
Schulenberg
,
T.
, and
Otic
,
I.
,
2021
, “
Suggestion for Design of a Small Modular SCWR
,”
Proceedings of the 10th International Symposium on SCWRs (ISSCWR-10)
, Prague, Czech Republic, Mar. 15–19.
19.
Zhang
,
L.
,
Zhu
,
F.
, and
Tang
,
R.
,
2009
, “
Corrosion Mechanism of Candidate Structural Materials for Supercritical Water-Cooled Reactor
,”
Front. Energy Power Eng. China
,
3
(
2
), pp.
233
240
.10.1007/s11708-009-0024-y
20.
Guo
,
X.
,
Fan
,
Y.
,
Gao
,
W.
,
Tang
,
R.
,
Chen
,
K.
,
Shen
,
Z.
, and
Zhang
,
L.
,
2019
, “
Corrosion Resistance of Candidate Cladding Materials for Supercritical Water Reactor
,”
Ann. Nucl. Energy
,
127
, pp.
351
363
.10.1016/j.anucene.2018.12.007
21.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauhen Rohren
,” Verein Deutscher Ingenieure: Forschungsheft, Berlin, Gernany, Technical Report No. 361.
22.
Kadivar
,
M.
,
Tormey
,
D.
, and
McGranaghan
,
G.
,
2021
, “
A Review on Turbulent Flow Over Rough Surfaces: Fundamentals and Theories
,”
Int. J. Thermofluids
,
10
, p.
100077
.10.1016/j.ijft.2021.100077
23.
Flack
,
K.
, and
Schultz
,
M.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
24.
Flack
,
K.
,
Schultz
,
M.
,
Barros
,
J.
, and
Kim
,
Y.
,
2016
, “
Skin-Friction Behavior in the Transitionally Rough Regime
,”
Int. J. Heat Fluid Flow
,
61
, pp.
21
30
.10.1016/j.ijheatfluidflow.2016.05.008
25.
Wiltschko
,
F.
,
Sipova
,
M.
,
Vit
,
J.
, and
Cheng
,
X.
,
2024
, “
Experimental Investigation of Heat Transfer to Supercritical Pressure R134a in Artificially Roughened Tubes
,”
ASME
Paper No. ICONE31-135141.10.1115/ICONE31-135141
26.
Cheng
,
X.
,
Liu
,
X.
, and
Gu
,
H.
,
2011
, “
Fluid-to-Fluid Scaling of Heat Transfer in Circular Tubes Cooled With Supercritical Fluids
,”
Nucl. Eng. Des.
,
241
(
2
), pp.
498
508
.10.1016/j.nucengdes.2010.11.017
27.
Schulenberg
,
T.
,
Starflinger
,
J.
,
Marsault
,
P.
,
Bittermann
,
D.
,
Maráczy
,
C.
,
Laurien
,
E.
,
LycKLama à Nijeholt
,
J.
, et al.,
2011
, “
European Supercritical Water Cooled Reactor
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3505
3513
.10.1016/j.nucengdes.2010.09.039
28.
Jackson
,
J.
,
Cotton
,
M.
, and
Axcell
,
B.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.10.1016/0142-727X(89)90049-0
29.
Mikielewicz
,
D.
,
Shehata
,
A.
,
Jackson
,
J.
, and
McEligot
,
D.
,
2002
, “
Temperature, Velocity and Mean Turbulence Structure in Strongly Heated Internal Gas Flows Comparison of Numerical Predictions With Data
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4333
4352
.10.1016/S0017-9310(02)00119-9
30.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 10
,”
National Institute of Standards and Technology
, Gaithersburg, MA.
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer-Verlag
,
Berlin, Germany
.
32.
Licht
,
J.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2008
, “
Heat Transfer to Water at Supercritical Pressures in a Circular and Square Annular Flow Geometry
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
156
166
.10.1016/j.ijheatfluidflow.2007.09.007
33.
Zhu
,
B.
,
Xu
,
J.
,
Zhang
,
H.
,
Xie
,
J.
, and
Li
,
M.
,
2020
, “
Effect of Non-Uniform Heating on sCO2 Heat Transfer Deterioration
,”
Appl. Therm. Eng.
,
181
, p.
115967
.10.1016/j.applthermaleng.2020.115967
34.
Jackson
,
J.
,
2017
, “
Models of Heat Transfer to Fluids at Supercritical Pressure With Influences of Buoyancy and Acceleration
,”
Appl. Therm. Eng.
,
124
, pp.
1481
1491
.10.1016/j.applthermaleng.2017.03.146
35.
McCarthy
,
J. R.
,
Trebes
,
D. M.
, and
Seader
,
J. D.
,
1968
, “
The Influence of Surface Roughness on the Heat Transfer to Gaseous Hydrogen Flowing Turbulently in Round Cross-Sectional Tubes
,”
Heat Transfer and Fluid Mechanics Institute
, Seattle, WA, June 17–18, pp.
33
46
.
36.
Petukhov
,
B. S.
, and
Kirillov
,
V. V.
,
1958
, “
On the Question of Heat Transfer to a Turbulent Flow of Fluids in Pipes (English Translation)
,”
Therm. Eng.
,
4
, pp.
63
68
.
37.
Petukhov
,
B.
,
Krasnoshchekov
,
E.
, and
Protopopov
,
V.
,
1961
, “
An Investigation of Heat Transfer to Fluids Flowing in Pipes Under Supercritical Pressure Conditions
,”
International Heat Transfer Conference
, Boulder, CO, Aug. 28–Sept. 1, pp.
569
578
.
38.
Krasnoshchekov
,
E. A.
, and
Protopopov
,
V. S.
,
1966
, “
Experimental Study of Heat Exchange in Carbon Dioxide in the Supercritical Range at High Temperature Drops (English Translation)
,”
High Temp.
,
3
(
4
), pp.
375
382
.
39.
Razumovskiy
,
V. G.
,
Ornatskiy
,
A. P.
, and
Mayevskiy
,
Y. M.
,
1990
, “
Local Heat Transfer and Hydraulic Behavior in Turbulent Channel Flow of Water at Supercritical Pressure
,”
Heat Transfer—Sov. Res.
,
1
(
22
), pp.
91
102
.https://inis.iaea.org/records/bxby1-khy33
40.
Kirillov
,
P.
,
Yur'ev
,
Y.
, and
Bobkov
,
V.
,
1990
,
Handbook of Thermal Hydraulic Calculations
,
Energoatomizdat Publishing House
,
Moscow, Russia
(in Russian).
41.
Pioro
,
I. L.
,
Khartabil
,
P.
, and
Duffey
,
R. B.
,
2003
, “
Heat Transfer at Supercritical Pressures (Survey)
,”
Proceedings of the 11th International Conference on Nuclear Engineering
, Tokyo, Japan, Apr. 20–23, Paper No. 36454, p.
13
.
42.
Kurganov
,
V.
,
1998
, “
Heat Transfer and Pressure Drop in Tubes Under Supercritical Pressure of the Coolant. Part 1: Specifics of the Thermophysical Properties, Hydrodynamics, and Heat Transfer of the Liquid. Regimes of Normal Heat Transfer
,”
Therm. Eng.
,
45
(
3
), pp.
177
185
.https://api.semanticscholar.org/CorpusID:100044303
43.
Gnielinski
,
V.
,
1975
, “
Neue Gleichungen Für Den Wärme- Und Stoffübergang in Turbulent Durchströmten Rohren Und Kanälen
,”
Forsch. Ingenieurwes.
,
41
(
1
), pp.
8
16
(in German).10.1007/BF02559682
You do not currently have access to this content.