Abstract

Thermal infrared (TIR) remote sensing shows potential for oil spill response. Most TIR remote sensing uses the brightness temperature contrast, ΔTB, between oil and oil-free water. This study evaluates the potential of remotely sensed ΔTB to quantify oil thickness through a series of lab experiments that measured actual surface temperature contrast, ΔT, for a Denver/Julesburg Basin crude oil. Specifically, TIR and visible video cameras imaged oil layers of different thicknesses, h, floating on seawater. Also, fast thermocouples collected high resolution (to ∼10 μm) vertical profiles. A novel deconvolution approach corrected for thermocouple time response. Slope changes in the profiles indicated the oil–water interface location. Experimental illumination was for full sunlight (outdoors) and incandescent light (indoors) for emulsified and unemulsified crude oils. Oil slicks were classified by distinct behaviors with a transition at h∼1 mm. Thinner than this transition, ΔT was strongly sensitive to h, with oil temperatures decreasing monotonically with depth in the slick. In contrast, oil slicks thicker than this transition featured an internal temperature peak with ΔT weakly sensitive to h. This peak isolates the oil below the peak from affecting surface temperatures. Thicker slicks also were associated with a thin warm air layer that increasingly developed with h. This study highlights the potential for deriving oil slick thickness from ΔTB and the need for an improved understanding of solar insolation absorption and heat transfer for a range of oil and oil emulsion slicks.

References

1.
Jensen
,
J. R.
,
Ramsey
,
E. W.
,
Holmes
,
J. M.
,
Michel
,
J. E.
,
Savitsky
,
B.
, and
Davis
,
B. A.
,
1990
, “
Environmental Sensitivity Index (ESI) Mapping for Oil Spills Using Remote Sensing and Geographic Information System Technology
,”
Int. J. Geogr. Inf. Syst.
,
4
(
2
), pp.
181
201
.10.1080/02693799008941539
2.
Monteiro
,
C. B.
,
Oleinik
,
P. H.
,
Leal
,
T. F.
,
Marques
,
W. C.
,
Nicolodi
,
J. L.
, and
Lopes
,
B. D. C. F. L.
,
2020
, “
Integrated Environmental Vulnerability to Oil Spills in Sensitive Areas
,”
Environ. Pollut.
,
267
, p.
115238
.10.1016/j.envpol.2020.115238
3.
Carson
,
R. T.
,
Mitchell
,
R. C.
,
Hanemann
,
M.
,
Kopp
,
R. J.
,
Presser
,
S.
, and
Ruud
,
P. A.
,
2003
, “
Contingent Valuation and Lost Passive Use: Damages From the Exxon Valdez Oil Spill
,”
Environ. Resour. Econ.
,
25
(
3
), pp.
257
286
.10.1023/A:1024486702104
4.
Bishop
,
R. C.
,
Boyle
,
K. J.
,
Carson
,
R. T.
,
Chapman
,
D.
,
Hanemann
,
W. M.
,
Kanninen
,
B.
,
Kopp
,
R. J.
, et al.,
2017
, “
Putting a Value on Injuries to Natural Assets: The BP Oil Spill
,”
Science
,
356
(
6335
), pp.
253
254
.10.1126/science.aam8124
5.
Ferguson
,
A.
,
Solo-Gabriele
,
H.
, and
Mena
,
K.
,
2020
, “
Assessment for Oil Spill Chemicals: Current Knowledge, Data Gaps, and Uncertainties Addressing Human Physical Health Risk
,”
Mar. Pollut. Bull.
,
150
, p.
110746
.10.1016/j.marpolbul.2019.110746
6.
Jensen
,
J. R.
,
Hall
,
J. L.
, and
Michel
,
J.
,
1998
, “
A Systems Approach to Environmental Sensitivity Index (ESI) Mapping for Oil Spill Contingency Planning and Response
,”
Photogramm. Eng. Remote Sens.
,
64
(
10
), pp.
1003
1014
.
7.
Leifer
,
I.
,
Lehr
,
W. J.
,
Simecek-Beatty
,
D.
,
Bradley
,
E.
,
Clark
,
R.
,
Dennison
,
P.
,
Hu
,
Y.
, et al.,
2012
, “
State of the Art Satellite and Airborne Marine Oil Spill Remote Sensing: Application to the BP Deepwater Horizon Oil Spill
,”
Remote Sens. Environ.
,
124
, pp.
185
209
.10.1016/j.rse.2012.03.024
8.
Kankara
,
R. S.
,
Arockiaraj
,
S.
, and
Prabhu
,
K.
,
2016
, “
Environmental Sensitivity Mapping and Risk Assessment for Oil Spill Along the Chennai Coast in India
,”
Mar. Pollut. Bull.
,
106
(
1–2
), pp.
95
103
.10.1016/j.marpolbul.2016.03.022
9.
Svejkovsky
,
J.
,
Hess
,
M.
,
Muskat
,
J.
,
Nedwed
,
T. J.
,
McCall
,
J.
, and
Garcia
,
O.
,
2016
, “
Characterization of Surface Oil Thickness Distribution Patterns Observed During the Deepwater Horizon (MC-252) Oil Spill With Aerial and Satellite Remote Sensing
,”
Mar. Pollut. Bull.
,
110
(
1
), pp.
162
176
.10.1016/j.marpolbul.2016.06.066
10.
Angelliaume
,
S.
,
Ceamanos
,
X.
,
Viallefont-Robinet
,
F.
,
Baqué
,
R.
,
Déliot
,
P.
, and
Miegebielle
,
V.
,
2017
, “
Hyperspectral and Radar Airborne Imagery Over Controlled Release of Oil at Sea
,”
Sensors
,
17
(
8
), p.
1772
.10.3390/s17081772
11.
Garcia-Pineda
,
O.
,
Staples
,
G.
,
Jones
,
C. E.
,
Hu
,
C.
,
Holt
,
B.
,
Kourafalou
,
V.
,
Graettinger
,
G.
, et al.,
2020
, “
Classification of Oil Spill by Thicknesses Using Multiple Remote Sensors.
,”
Remote Sens. Environ.
,
236
, p.
111421
.10.1016/j.rse.2019.111421
12.
Bonn Agreement
,
2007
,
Bonn Agreement Aerial Surveillance Handbook
, 96, Bonn Agreement Secretariat, London, UK, p.
2004
.
13.
ASTM Standard
,
2006
,
Standard Guide for Visually Estimating Oil Spill Thickness on Water
,
West
,
Conshohocken, PA
, p.
4
.
14.
Taft
,
D. G.
,
Egging
,
D. E.
, and
Kuhn
,
H. A.
,
1995
, “
Sheen Surveillance: An Environmental Monitoring Program Subsequent to the 1989 Exxon Valdez Shoreline Cleanup
,”
Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, ASTM STP 1219
,
Peter G.
Wells
,
James N.
Butler
, and
Jane S.
Hughes
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
.
15.
Fingas
,
M.
,
2018
, “
The Challenges of Remotely Measuring Oil Slick Thickness
,”
Remote Sens.
,
10
(
2
), p.
319
.10.3390/rs10020319
16.
Fingas
,
M.
,
2011
, “
Chapter 23—An Overview of in-Situ Burning
,”
Oil Spill Science and Technology
,
M.
Fingas
, ed.,
Gulf Professional Publishing
,
Boston, MA
, pp.
737
903
.
17.
van Gelderen
,
L.
,
Brogaard
,
N. L.
,
Sørensen
,
M. X.
,
Fritt-Rasmussen
,
J.
,
Rangwala
,
A. S.
, and
Jomaas
,
G.
,
2015
, “
Importance of the Slick Thickness for Effective in-Situ Burning of Crude Oil
,”
Fire Saf. J.
,
78
, pp.
1
9
.10.1016/j.firesaf.2015.07.005
18.
Leifer
,
I.
,
Murray
,
J.
,
Streett
,
D.
,
Stough
,
T.
,
Ramirez
,
E.
, and
Gallegos
,
S.
,
2015
, “
The Federal Oil Science Team for Emergency Response Remote Sensing, FOSTERRS: Enabling Remote Sensing Technology for Marine Disaster Response
,”
Time-Sensitive Remote Sensing
,
C.
Lippitt
,
D.
Stow
, and
L.
Coulter
, eds.,
Springer-Verlag
,
New York,
pp.
91
111
.10.1007/978-1-4939-2602-2_7
19.
Fingas
,
M.
,
2017
,
Oil Spill Science and Technology
, 2nd ed.,
Gulf Professional Publishing
, Cambridge, MA.
20.
Hu
,
C.
,
Lu
,
Y.
,
Sun
,
S.
, and
Liu
,
Y.
,
2021
, “
Optical Remote Sensing of Oil Spills in the Ocean: What is Really Possible?
,”
J. Remote Sens.
,
2021
, pp.
1
13
.10.34133/2021/9141902
21.
NRC
,
2003
,
Oil in the Sea III: Inputs, Fates, and Effects
,
National Academy of Sciences
,
Washington, DC
.
22.
Wong
,
S. F.
,
Lim
,
J. S.
, and
Dol
,
S. S.
,
2015
, “
Crude Oil Emulsion: A Review on Formation, Classification and Stability of Water-in-Oil Emulsions
,”
J. Pet. Sci. Eng.
,
135
, pp.
498
504
.10.1016/j.petrol.2015.10.006
23.
Lu
,
Y.
,
Li
,
X.
,
Tian
,
Q.
,
Zheng
,
G.
,
Sun
,
S.
,
Liu
,
Y.
, and
Yang
,
Q.
,
2013
, “
Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories
,”
Mar. Geodesy
,
36
(
3
), pp.
334
346
.10.1080/01490419.2013.793633
24.
Baszanowska
,
E.
, and
Otremba
,
Z.
,
2019
, “
Detecting the Presence of Different Types of Oil in Seawater Using a Fluorometric Index
,”
Sensors
,
19
(
17
), p.
3774
.10.3390/s19173774
25.
Clark
,
R. N.
,
Swayze
,
G. A.
,
Leifer
,
I.
,
Livo
,
K. E.
,
Kokaly
,
R.
,
Hoefen
,
T.
,
Lundeen
,
S.
, et al.,
2010
, “
A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy
,” U.S. Geological Survey Open-File Report No. 2010-1167, pp.
1
51
.
26.
Clark
,
R. N.
, Swayze, G. A., Leifer, I., Livo, K. E., Kokaly, R., Hoefen, T., Lundeen, S., et al.,
2010
, “
A Method for Qualitative Mapping of Thick Oil Spills Using Imaging Spectroscopy
,” U.S. Geological Survey Open-File Report No. 2010-1101.
27.
Espedal
,
H. A.
,
1999
, “
Satellite SAR Oil Spill Detection Using Wind History Information
,”
Int. J. Remote Sens.
,
20
(
1
), pp.
49
65
.10.1080/014311699213596
28.
Svejkovsky
,
J.
,
2009
,
Development of a Portable Multispectral Aerial Sensor for Real-Time Oil Spill Thickness Mapping in Coastal and Offshore Waters
,
U.S. Minerals Management Service
,
Herndon, VA
, p.
32
.
29.
Tseng
,
W. Y.
, and
Chiu
,
L. S.
,
1994
, “
AVHRR Observations of Persian Gulf Oil Spills
,”
Proceedings of IGARSS '94-1994 IEEE International Geoscience and Remote Sensing Symposium
,
IEEE
,
Pasadena, CA, Aug. 8–12
.10.1109/IGARSS.1994.399259
30.
Grierson
,
I. T.
,
1998
, “
Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours
,”
Environ. Manage.
,
22
(
6
), pp.
905
912
.10.1007/s002679900157
31.
Fingas
,
M.
, and
Brown
,
C. E.
,
2017
, “
A Review of Oil Spill Remote Sensing
,”
Sensors
,
18
(
2
), p.
91
.10.3390/s18010091
32.
Niclòs
,
R.
,
Doña
,
C.
,
Valor
,
E.
, and
Bisquert
,
M.
,
2014
, “
Thermal-Infrared Spectral and Angular Characterization of Crude Oil and Seawater Emissivities for Oil Slick Identification
,”
IEEE Trans. Geosci. Remote Sens.
,
52
(
9
), pp.
5387
5395
.10.1109/TGRS.2013.2288517
33.
Lu
,
Y.
,
Zhan
,
W.
, and
Hu
,
C.
,
2016
, “
Detecting and Quantifying Oil Slick Thickness by Thermal Remote Sensing: A Ground-Based Experiment
,”
Remote Sens. Environ.
,
181
, pp.
207
217
.10.1016/j.rse.2016.04.007
34.
Lammoglia
,
T.
, and
Filho
,
C. R. D. S.
,
2011
, “
Spectroscopic Characterization of Oils Yielded From Brazilian Offshore Basins: Potential Applications of Remote Sensing
,”
Remote Sens. Environ.
,
115
(
10
), pp.
2525
2535
.10.1016/j.rse.2011.04.038
35.
Campbell
,
G. S.
, and
Diak
,
G. R.
,
2005
, “
Net and Thermal Radiation Estimation and Measurement
,”
Micrometeorology in Agricultural Systems
,
J.
Hatfield
and
J.
Baker
, eds.,
Wiley
, Madison, WI, pp.
59
92
.10.2134/agronmonogr47.c4
36.
Smith
,
S.
, and
Toumi
,
R.
,
2008
, “
Measuring Cloud Cover and Brightness Temperature With a Ground-Based Thermal Infrared Camera
,”
J. Appl. Meteorol. Climatol.
,
47
(
2
), pp.
683
693
.10.1175/2007JAMC1615.1
37.
Guo
,
J.-Y.
,
Wu
,
F.-C.
,
Zhang
,
L.
,
Liao
,
H.-Q.
,
Zhang
,
R.-Y.
,
Li
,
W.
,
Zhao
,
X.-L.
, et al.,
2011
, “
Screening Level of PAHs in Sediment Core From Lake Hongfeng, Southwest China
,”
Arch. Environ. Contam. Toxicol.
,
60
(
4
), pp.
590
596
.10.1007/s00244-010-9568-4
38.
Guo
,
G.
,
Liu
,
B.
, and
Liu
,
C.
,
2020
, “
Thermal Infrared Spectral Characteristics of Bunker Fuel Oil to Determine Oil-Film Thickness and API
,”
J. Mar. Sci. Eng.
,
8
(
2
), p.
135
.10.3390/jmse8020135
39.
Shih
,
W.-C.
, and
Andrews
,
A. B.
,
2008
, “
Modeling of Thickness Dependent Infrared Radiance Contrast of Native and Crude Oil Covered Water Surfaces
,”
Opt. Express
,
16
(
14
), pp.
10535
10542
.10.1364/OE.16.010535
40.
Niclòs
,
R.
,
Valor
,
E.
,
Caselles
,
V.
,
Coll
,
C.
, and
Sánchez
,
J. M.
,
2005
, “
In Situ Angular Measurements of Thermal Infrared Sea Surface Emissivity — Validation of Models
,”
Remote Sensing Environ.
,
94
(
1
), pp.
83
93
.10.1016/j.rse.2004.09.002
41.
Wenyao
,
L.
,
Field
,
R. T.
,
Gantt
,
R. G.
, and
Klemas
,
V.
,
1987
, “
Measurement of the Surface Emissivity of Turbid Waters
,”
Chin. J. Oceanology Limnology
,
5
(
4
), pp.
363
369
.10.1007/BF02843818
42.
Fingas
,
M.
, and
Brown
,
C.
,
2014
, “
Review of Oil Spill Remote Sensing
,”
Mar. Pollut. Bull.
,
83
(
1
), pp.
9
23
.10.1016/j.marpolbul.2014.03.059
43.
Shih
,
W.-C.
, and
Andrews
,
A. B.
,
2008
, “
Infrared Contrast of Crude-Oil-Covered Water Surfaces
,”
Opt. Lett.
,
33
(
24
), pp.
3019
3021
.10.1364/OL.33.003019
44.
Kirk
,
J. T.
,
1985
, “
Effects of Suspensoids (Turbidity) on Penetration of Solar Radiation in Aquatic Ecosystems
,”
Hydrobiologia
,
125
(
1
), pp.
195
208
.10.1007/BF00045935
45.
Fairall
,
C. W.
,
Bradley
,
E. F.
,
Godfrey
,
J. S.
,
Wick
,
G. A.
,
Edson
,
J. B.
, and
Young
,
G. S.
,
1996
, “
Cool-Skin and Warm-Layer Effects on Sea Surface Temperature
,”
J. Geophys. Res. Atmos.
,
101
(
C1
), pp.
1295
1308
.10.1029/95JC03190
46.
Ewing
,
G.
, and
McAlister
,
E. D.
,
1960
, “
On the Thermal Boundary Layer of the Ocean
,”
Science
,
131
(
3410
), pp.
1374
1376
.10.1126/science.131.3410.1374
47.
Katsaros
,
K. B.
,
1980
, “
The Aqueous Thermal Boundary Layer
,”
Boundary-Layer Meteorol.
,
18
(
1
), pp.
107
127
.10.1007/BF00117914
48.
Emery
,
W. J.
,
Castro
,
S.
,
Wick
,
G. A.
,
Schluessel
,
P.
, and
Donlon
,
C.
,
2001
, “
Estimating Sea Surface Temperature From Infrared Satellite and in Situ Temperature Data
,”
Bull. Am. Meteorol. Soc.
,
82
(
12
), pp.
2773
2785
.10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
49.
Wick
,
G. A.
,
Emery
,
W. J.
,
Kantha
,
L. H.
, and
Schlüssel
,
P.
,
1996
, “
The Behavior of the Bulk–Skin Sea Surface Temperature Difference Under Varying Wind Speed and Heat Flux
,”
J. Phys. Oceanography
,
26
(
10
), pp.
1969
1988
.10.1175/1520-0485(1996)026<1969:TBOTBS>2.0.CO;2
50.
Donlon
,
C. J.
,
Minnett
,
P. J.
,
Gentemann
,
C.
,
Nightingale
,
T. J.
,
Barton
,
I. J.
,
Ward
,
B.
, and
Murray
,
M. J.
,
2002
, “
Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research
,”
J. Clim.
,
15
(
4
), pp.
353
369
.10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2
51.
Smith
,
D. G.
,
2013
,
Field Guide to Physical Optics
,
SPIE Press
,
Bellingham, WA
.
52.
Goldfeld
,
M. A.
, and
Pickalov
,
V. V.
,
2019
, “
Correction of Inertance of Temperature Sensing Devices in High-Speed Flow
,”
J. Phys. Conf. Ser.
,
1404
(
1
), p.
012081
.10.1088/1742-6596/1404/1/012081
53.
Jafari
,
P.
,
Amritkar
,
A.
, and
Ghasemi
,
H.
,
2020
, “
Temperature Discontinuity at an Evaporating Water Interface
,”
J. Phys. Chem. C
,
124
(
2
), pp.
1554
1559
.10.1021/acs.jpcc.9b10838
You do not currently have access to this content.