Abstract

The thermohydraulics of a single-loop pulsating heat pipe (PHP) for cryogenic applications have been simulated. The 120 mm long PHP tube is made of a 1.5 mm diameter inner tube of thickness 0.83 mm. The computation fluid dynamics (CFD) analysis performed with the ansysfluent software is a 2D numerical study using pure nitrogen as the working fluid in binary phases. The boundary condition on the evaporator is of constant heat flux, while the same on the condenser is of constant temperature. The phase behavior of the liquid and vapor and their interactions are accounted for through the volume of fluid (VOF) method and the Lee model. The numerical model is validated using the existing experimental data, with an agreement of less than 8% between them. The thermo-hydraulic variations of temperature, pressure, and velocity have been simulated for different heat loads and fractional liquid contents (fill ratios). The temperature and pressure oscillations set in the PHP-fluid increase with the heat added to the evaporator while the fluid velocity remains independent. The heat load and the fill ratio dictate the effective thermal conductivity—attaining nearly 3400 W/mK for a fill ratio of 70% in the chosen PHP geometry. An alteration has been made in the Jacob number to predict the dominance of sensible heat over latent heat in a PHP, postulated by other researchers. The constant fill ratio assumption is not truly valid as it indicates a small yet finite variation with the change in the heat load.

References

1.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4921041.
2.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes−Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
3.
Khandekar
,
S.
,
Charoensawan
,
P.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes - Part B: Visualization and Semi-Empirical Modeling
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2021
2033
.10.1016/S1359-4311(03)00168-6
4.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
5.
Alhuyi Nazari
,
M.
,
Ahmadi
,
M. H.
,
Ghasempour
,
R.
,
Shafii
,
M. B.
,
Mahian
,
O.
,
Kalogirou
,
S.
, and
Wongwises
,
S.
,
2018
, “
A Review on Pulsating Heat Pipes: From Solar to Cryogenic Applications
,”
Appl. Energy
,
222
, pp.
475
484
.10.1016/j.apenergy.2018.04.020
6.
Mito
,
T.
,
Natsume
,
K.
,
Yanagi
,
N.
,
Tamura
,
H.
, and
Terazaki
,
Y.
,
2013
, “
Enhancement of Thermal Properties of HTS Magnets Using Built-in Cryogenic Oscillating Heat Pipes
,”
IEEE Trans. Appl. Supercond.
,
23
(
3
), p.
4602905
.10.1109/TASC.2013.2251393
7.
Iwasa
,
Y.
,
2009
,
Case Studies in Superconducting Magnets: Design and Operational Issues
,
Springer
, New York.
8.
Liang
,
Q.
,
Li
,
Y.
, and
Wang
,
Q.
,
2018
, “
Cryogenic Oscillating Heat Pipe for Conduction-Cooled Superconducting Magnets
,”
IEEE Trans. Appl. Supercond.
,
28
(
3
), p. 0600405.10.1109/TASC.2017.2782783
9.
Li
,
Y.
,
Wang
,
Q.
,
Chen
,
S.
,
Zhao
,
B.
, and
Dai
,
Y.
,
2014
, “
Experimental Investigation of the Characteristics of Cryogenic Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
79
, pp.
713
719
.10.1016/j.ijheatmasstransfer.2014.08.061
10.
Fonseca
,
L. D.
,
Miller
,
F.
, and
Pfotenhauer
,
J.
,
2018
, “
Experimental Heat Transfer Analysis of a Cryogenic Nitrogen Pulsating Heat Pipe at Various Liquid Fill Ratios
,”
Appl. Therm. Eng.
,
130
, pp.
343
353
.10.1016/j.applthermaleng.2017.11.029
11.
Sagar
,
K. R.
,
Desai
,
A. B.
,
Naik
,
H. B.
, and
Mehta
,
H. B.
,
2021
, “
Experimental Investigations on Two-Turn Cryogenic Pulsating Heat Pipe With Cylindrical Shell-Type Condenser
,”
Appl. Therm. Eng.
,
196
, p.
117240
.10.1016/j.applthermaleng.2021.117240
12.
Barba
,
M.
,
Bruce
,
R.
,
Bouchet
,
F.
,
Bonelli
,
A.
, and
Baudouy
,
B.
,
2021
, “
Effects of Filling Ratio of a Long Cryogenic Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
194
, p.
117072
.10.1016/j.applthermaleng.2021.117072
13.
Liang
,
Q.
,
Li
,
Y.
, and
Wang
,
Q.
,
2018
, “
Study on a Neon Cryogenic Oscillating Heat Pipe With Long Heat Transport Distance
,” ASME J.
Heat Mass Transfer-Trans. ASME
,
54
(
6
), pp.
1721
1727
.10.1007/s00231-017-2269-z
14.
Liang
,
Q.
,
Li
,
Y.
, and
Wang
,
Q.
,
2018
, “
Effects of Filling Ratio and Condenser Temperature on the Thermal Performance of a Neon Cryogenic Oscillating Heat Pipe
,”
Cryogenics
,
89
, pp.
102
106
.10.1016/j.cryogenics.2017.12.002
15.
Dixit
,
T.
,
Authelet
,
G.
,
Mailleret
,
C.
,
Gouit
,
F.
,
Stepanov
,
V.
, and
Baudouy
,
B.
,
2023
, “
High Performance and Working Stability of an 18 W Class Neon Pulsating Heat Pipe in Vertical/Horizontal Orientation
,”
Cryogenics
,
132
, p.
103670
.10.1016/j.cryogenics.2023.103670
16.
Sun
,
X.
,
Pfotenhauer
,
J.
,
Jiao
,
B.
,
Fonseca
,
L. D.
,
Han
,
D.
, and
Gan
,
Z.
,
2018
, “
Investigation on the Temperature Dependence of Filling Ratio in Cryogenic Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
126
, pp.
237
244
.10.1016/j.ijheatmasstransfer.2018.05.147
17.
Sun
,
X.
,
Li
,
S.
,
Jiao
,
B.
,
Gan
,
Z.
, and
Pfotenhauer
,
J.
,
2019
, “
Experimental Study on a Hydrogen Closed-Loop Pulsating Heat Pipe With Two Turns
,”
Cryogenics
,
97
, pp.
63
69
.10.1016/j.cryogenics.2018.10.010
18.
Gan
,
Z.
,
Sun
,
X.
,
Jiao
,
B.
,
Han
,
D.
,
Deng
,
H.
,
Wang
,
S.
, and
Pfotenhauer
,
J. M.
,
2019
, “
Experimental Study on a Hydrogen Closed Loop Pulsating Heat Pipe With Different Adiabatic Lengths
,”
Heat Transfer Eng.
,
40
(
3–4
), pp.
205
214
.10.1080/01457632.2018.1426223
19.
Li
,
S.
,
Sun
,
X.
,
Liu
,
D.
,
Jiao
,
B.
,
Pfotenhauer
,
J.
,
Gan
,
Z.
, and
Qiu
,
M.
,
2022
, “
Experimental Study on a Hydrogen Pulsating Heat Pipe in Different Heating Modes
,”
Cryogenics
,
123
, p.
103440
.10.1016/j.cryogenics.2022.103440
20.
Li
,
M.
,
Li
,
L.
, and
Xu
,
D.
,
2019
, “
Effect of Filling Ratio and Orientation on the Performance of a Multiple Turns Helium Pulsating Heat Pipe
,”
Cryogenics
,
100
, pp.
62
68
.10.1016/j.cryogenics.2019.04.006
21.
Li
,
M.
,
Li
,
L.
, and
Xu
,
D.
,
2018
, “
Effect of Number of Turns and Configurations on the Heat Transfer Performance of Helium Cryogenic Pulsating Heat Pipe
,”
Cryogenics
,
96
, pp.
159
165
.10.1016/j.cryogenics.2018.09.005
22.
Fonseca
,
L. D.
,
Pfotenhauer
,
J.
, and
Miller
,
F.
,
2018
, “
Results of a Three Evaporator Cryogenic Helium Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1275
1286
.10.1016/j.ijheatmasstransfer.2017.12.108
23.
Barron
,
R.
,
1985
,
Cryogenic Systems
,
Oxford University Press
,
New York
.
24.
Nikolayev
,
V. S.
,
2021
, “
Physical Principles and State-of-the-Art of Modeling of the Pulsating Heat Pipe: A Review
,”
Appl. Therm. Eng.
,
195
, p.
117111
.10.1016/j.applthermaleng.2021.117111
25.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M. B.
,
2002
, “
Analysis of Liquid-Vapor Pulsating Flow in a U-Shaped Miniature Tube
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2501
2508
.10.1016/S0017-9310(01)00348-9
26.
Barba
,
M.
,
Bruce
,
R.
, and
Baudouy
,
B.
,
2020
, “
Numerical Simulation of the Thermal and Fluid-Dynamic Behavior of a Cryogenic Capillary Tube
,”
Cryogenics
,
106
, p.
103044
.10.1016/j.cryogenics.2020.103044
27.
Sagar
,
K. R.
,
Naik
,
H. B.
, and
Mehta
,
H. B.
,
2021
, “
Numerical Study of Liquid Nitrogen Based Pulsating Heat Pipe for Cooling Superconductors
,”
Int. J. Refrig.
,
122
, pp.
33
46
.10.1016/j.ijrefrig.2020.10.033
28.
Lin
,
Z.
,
Wang
,
S.
,
Shirakashi
,
R.
, and
Winston Zhang
,
L.
,
2013
, “
Simulation of a Miniature Oscillating Heat Pipe in Bottom Heating Mode Using CFD With Unsteady Modeling
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
642
656
.10.1016/j.ijheatmasstransfer.2012.09.007
29.
Pouryoussefi
,
S. M.
, and
Zhang
,
Y.
,
2016
, “
Numerical Investigation of Chaotic Flow in a 2D Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
98
, pp.
617
627
.10.1016/j.applthermaleng.2015.12.097
30.
Pouryoussefi
,
S. M.
, and
Zhang
,
Y.
,
2017
, “
Analysis of Chaotic Flow in a 2D Multi-Turn Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
126
, pp.
1069
1076
.10.1016/j.applthermaleng.2017.01.097
31.
Wang
,
J.
,
Ma
,
H.
,
Zhu
,
Q.
,
Dong
,
Y.
, and
Yue
,
K.
,
2016
, “
Numerical and Experimental Investigation of Pulsating Heat Pipes With Corrugated Configuration
,”
Appl. Therm. Eng.
,
102
, pp.
158
166
.10.1016/j.applthermaleng.2016.03.163
32.
Vo
,
D. T.
,
Kim
,
H. T.
,
Ko
,
J.
, and
Bang
,
K. H.
,
2020
, “
An Experiment and Three-Dimensional Numerical Simulation of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
150
, p.
119317
.10.1016/j.ijheatmasstransfer.2020.119317
33.
Li
,
Q.
,
Wang
,
C.
,
Wang
,
Y.
,
Wang
,
Z.
,
Li
,
H.
, and
Lian
,
C.
,
2020
, “
Study on the Effect of the Adiabatic Section Parameters on the Performance of Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
180
, p.
115813
.10.1016/j.applthermaleng.2020.115813
34.
Wang
,
W. W.
,
Wang
,
L.
,
Cai
,
Y.
,
Yang
,
G. B.
,
Zhao
,
F. Y.
,
Liu
,
D.
,
Yu
,., and
Q.
,
H.
,
2020
, “
Thermo-Hydrodynamic Model and Parametric Optimization of a Novel Miniature Closed Oscillating Heat Pipe With Periodic Expansion-Constriction Condensers
,”
Int. J. Heat Mass Transfer
,
152
, p.
119460
.10.1016/j.ijheatmasstransfer.2020.119460
35.
Wang
,
J.
,
Pan
,
Y.
, and
Liu
,
X.
,
2021
, “
Investigation on Start-Up and Thermal Performance of the Single-Loop Pulsating Heat Pipe With Variable Diameter
,”
Int. J. Heat Mass Transfer
,
180
, p.
121811
.10.1016/j.ijheatmasstransfer.2021.121811
36.
Kang
,
Z.
,
Shou
,
D.
, and
Fan
,
J.
,
2021
, “
Numerical Study of a Novel Single-Loop Pulsating Heat Pipe With Separating Walls Within the Flow Channel
,”
Appl. Therm. Eng.
,
196
, p.
117246
.10.1016/j.applthermaleng.2021.117246
37.
Mucci
,
A.
,
Kholi
,
F. K.
,
Chetwynd-Chatwin
,
J.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
Numerical Investigation of Flow Instability and Heat Transfer Characteristics Inside Pulsating Heat Pipes With Different Numbers of Turns
,”
Int. J. Heat Mass Transfer
,
169
, p.
120934
.10.1016/j.ijheatmasstransfer.2021.120934
38.
ANSYS FLUENT,
2020
, “
Ansys Fluent Theory Guide
,”
ANSYS Inc
., Canonsburg, PA.
39.
Lee
,
W. H.
, and
Lyczkowski
,
R. W.
,
2000
, “
The Basic Character of Five Two-Phase Flow Model Equation Sets
,”
Int. J. Numer. Methods Fluids
,
33
(
8
), pp.
1075
1098
.10.1002/1097-0363(20000830)33:8<1075::AID-FLD43>3.0.CO;2-5
40.
Kim
,
Y.
,
Choi
,
J.
,
Kim
,
S.
, and
Zhang
,
Y.
,
2015
, “
Effects of Mass Transfer Time Relaxation Parameters on Condensation in a Thermosyphon
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5497
5505
.10.1007/s12206-015-1151-5
41.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
42.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
, “
Reference Fluid Thermodynamic and Transport Properties (REFPROP)
,” Version 9.1, NIST Standard Reference Database No. 23.
43.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
44.
Groll
,
M.
, and
Khandekar
,
S.
,
2003
, “
Pulsating Heat Pipes: Progress and Prospects
,”
Proceedings of International Conference on Energy and the Environment
,
Shanghai, China, May 22–24
, pp.
723
730
.
You do not currently have access to this content.