Abstract

The 2ω method, in which the temperature sensing line is separate from the heater line, and the closely related 3ω method, with a heater line that is its own temperature sensor, are popular electrothermal techniques for measuring the thermal conductivity. For the 2ω method, Ordonez-Miranda et al. (2023, “Analytical Integration of the Heater and Sensor 3ω Signals of Anisotropic Bulk Materials and Thin Films,” J. Appl. Phys., 133(20), p. 205104) recently obtained an analytical solution for its thermal model for a substrate with differing in-plane and out-of-plane thermal conductivities. Here, we further generalize the 2ω thermal model by deriving an exact closed-form solution for a substrate of arbitrarily aligned thermal conductivity. The derivation builds on a Green's function from Mishra et al. (2015, “A 3 Omega Method to Measure an Arbitrary Anisotropic Thermal Conductivity Tensor,” Rev. Sci. Instrum., 86(5), p. 054902), and the resulting 2ω expression is shown to maintain a similar Meijer G-function form as the known analytical solution of the 3ω method.

References

1.
Ramu
,
A. T.
, and
Bowers
,
J. E.
,
2012
, “
A ‘2-Omega’ Technique for Measuring Anisotropy of Thermal Conductivity
,”
Rev. Sci. Instrum.
,
83
(
12
), p.
124903
.10.1063/1.4770131
2.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method
,”
Rev. Sci. Instrum.
,
61
(
2
), pp.
802
808
.10.1063/1.1141498
3.
Wang
,
H.
,
Guo
,
L.
,
Wang
,
D.
,
Xu
,
B.
,
Chu
,
W.
, and
Xu
,
W.
,
2022
, “
Measuring In-Plane Thermal Conductivity of Polymers Using a Membrane-Based Modified Ångström Method
,”
Int. J. Therm. Sci.
,
179
, p.
107701
.10.1016/j.ijthermalsci.2022.107701
4.
Paterson
,
J.
,
Singhal
,
D.
,
Tainoff
,
D.
,
Richard
,
J.
, and
Bourgeois
,
O.
,
2020
, “
Thermal Conductivity and Thermal Boundary Resistance of Amorphous Al2O3 Thin Films on Germanium and Sapphire
,”
J. Appl. Phys.
,
127
(
24
), p.
245105
.10.1063/5.0004576
5.
Handwerg
,
M.
,
Mitdank
,
R.
,
Galazka
,
Z.
, and
Fischer
,
S.
,
2016
, “
Temperature-Dependent Thermal Conductivity and Diffusivity of a Mg-Doped Insulating β-Ga2O3 Single Crystal Along [100], [010] and [001]
,”
Semicond. Sci. Technol.
,
31
(
12
), p.
125006
.10.1088/0268-1242/31/12/125006
6.
Mitarai
,
K.
,
Okuhata
,
R.
,
Chikada
,
J.
,
Kaneko
,
T.
,
Uematsu
,
Y.
,
Komatsubara
,
Y.
,
Ishibe
,
T.
, and
Nakamura
,
Y.
,
2020
, “
An Advanced 2ω Method Enabling Thermal Conductivity Measurement for Various Sample Thicknesses: From Thin Films to Bulk Materials
,”
J. Appl. Phys.
,
128
(
1
), p.
015102
.10.1063/5.0007302
7.
Liu
,
P.
,
Wen
,
Y.
,
Siah
,
C. F.
,
Pam
,
M. E.
,
Xu
,
B.
,
Thean
,
A. V.-Y.
,
Lim
,
Y. K.
, and
Shin
,
S.
,
2023
, “
A Dual-Domain 3ω Method for Measuring the In-Plane Thermal Conductivity of High-Conductive Thin Films
,”
Appl. Phys. Lett.
,
122
, p.
252201
.10.1063/5.0154177
8.
Ramu
,
A. T.
,
Halaszynski
,
N. I.
,
Peters
,
J. D.
,
Meinhart
,
C. D.
, and
Bowers
,
J. E.
,
2016
, “
An Electrical Probe of the Phonon Mean-Free Path Spectrum
,”
Sci. Rep.
,
6
(
1
), p.
33571
.10.1038/srep33571
9.
Tong
,
T.
, and
Majumdar
,
A.
,
2006
, “
Reexamining the 3-Omega Technique for Thin Film Thermal Characterization
,”
Rev. Sci. Instrum.
,
77
(
10
), p.
104902
.10.1063/1.2349601
10.
Borca-Tasciuc
,
T.
,
Kumar
,
A.
, and
Chen
,
G.
,
2001
, “
Data Reduction in 3ω Method for Thin-Film Thermal Conductivity Determination
,”
Rev. Sci. Instrum.
,
72
(
4
), pp.
2139
2147
.10.1063/1.1353189
11.
Duquesne
,
J.-Y.
,
Fournier
,
D.
, and
Frétigny
,
C.
,
2010
, “
Analytical Solutions of the Heat Diffusion Equation for 3ω Method Geometry
,”
J. Appl. Phys.
,
108
(
8
), p.
086104
.10.1063/1.3486441
12.
Mishra
,
V.
,
Hardin
,
C. L.
,
Garay
,
J. E.
, and
Dames
,
C.
,
2015
, “
A 3 Omega Method to Measure an Arbitrary Anisotropic Thermal Conductivity Tensor
,”
Rev. Sci. Instrum.
,
86
(
5
), p.
054902
.10.1063/1.4918800
13.
Ramu
,
A. T.
, and
Bowers
,
J. E.
,
2012
, “
Analysis of the ‘3-Omega’ Method for Substrates and Thick Films of Anisotropic Thermal Conductivity
,”
J. Appl. Phys.
,
112
(
4
), p.
043516
.10.1063/1.4747836
14.
Ordonez-Miranda
,
J.
,
Jalabert
,
L.
,
Wu
,
Y.
,
Volz
,
S.
, and
Nomura
,
M.
,
2023
, “
Analytical Integration of the Heater and Sensor 3ω Signals of Anisotropic Bulk Materials and Thin Films
,”
J. Appl. Phys.
,
133
(
20
), p.
205104
.10.1063/5.0151725
15.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1968
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
, Vol.
55
,
U.S. Government Printing Office
, Washington, D.C., p.
480
.
16.
Brychkov
,
Y.
,
Marichev
,
O.
, and
Savischenko
,
N.
,
2018
,
Handbook of Mellin Transforms
,
Chapman and Hall/CRC
, London, UK, p.
204
.
17.
This is a contour integral along a contour parallel to the imaginary axis with indentations to avoid the poles of the included Gamma functions; it is closely related with the development of Mellin transforms and the Meijer G-functions [26,27].
18.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes. I
,”
Phys. Rev.
,
37
(
4
), pp.
405
426
.10.1103/PhysRev.37.405
19.
Weisstein
,
E. W.
,
2024
, “
Meijer G-Function
,” Mathworld, Champaign, IL, accessed Nov. 27, 2024, https://mathworld.wolfram.com/MeijerG-Function.html
20.
DLMF
, 2024, “
NIST Digital Library of Mathematical Functions
,” Release 1.2.3 of Dec. 15, 2024,
F. W. J.
Olver
,
A. B.
Olde Daalhuis
,
D. W.
Lozier
,
B. I.
Schneider
,
R. F.
Boisvert
,
C. W.
Clark
,
B. R.
Miller
,
B. V.
Saunders
,
H. S.
Cohl
, and
M. A.
McClain
, eds., Eq. (16.17.1), NIST, Gaithersburg, MD, accessed Nov. 27, 2024, https://dlmf.nist.gov/16.17#E1
21.
A typographical error below Eq. (12) of Ref. [12] has come to our notice. There the reference says Ω=(b22ωC)/(kxxkyykxy2), whereas the correct expression is Ω=(b22ωCkxx)/(kxxkyykxy2). This seems to be a one-off typographical error, as the correct expression for Ω is written elsewhere in Ref. [12], including within its Eq. (15) and as the dimensionless frequency axis of Fig. 3.
22.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conductivity of Thin Films: 3 Omega and Related Electrothermal Methods
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
7
49
.10.1615/AnnualRevHeatTransfer.v16.20
23.
Yang
,
G.
, and
Cao
,
B.-Y.
,
2024
, “
Three-Sensor 2ω Method With Multi-Directional Layout: A General Methodology for Measuring Thermal Conductivity of Solid Materials
,”
Int. J. Heat Mass Transfer
,
219
, p.
124878
.10.1016/j.ijheatmasstransfer.2023.124878
24.
Wang
,
H.
,
Liang
,
Z.
,
Tang
,
J.
,
Wang
,
D.
,
Xu
,
B.
,
Guo
,
L.
,
Guo
,
Y.
, and
Chu
,
W.
,
2024
, “
Thermal Characterization of Thin Films: A Chip-Based Approach for In-Plane Property Analysis
,”
Appl. Phys. Lett.
,
124
(
26
), p.
262201
.10.1063/5.0197684
25.
Mazzelli
,
F.
,
Paterson
,
J.
,
Leroy
,
F.
, and
Bourgeois
,
O.
,
2025
, “
A Combined 2ω/3ω Method for the Measurement of the In-Plane Thermal Conductivity of Thin Films in Multilayer Stacks: Application to a Silicon-on-Insulator Wafer
,”
J. Appl. Phys.
,
137
(
1
), p.
015106
.10.1063/5.0227482
26.
Weisstein
,
E. W.
,
2024
, “
Mellin-Barnes Integral
,” Mathworld, Champaign, IL, accessed Nov. 27, 2024, https://mathworld.wolfram.com/Mellin-BarnesIntegral.html
27.
Barnes
,
E. W.
,
1908
, “
A New Development of the Theory of the Hypergeometric Functions
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
141
177
.10.1112/plms/s2-6.1.141
You do not currently have access to this content.