Abstract

Reliable ignition-assistant technologies are essential for combustion engines in modern aviation to optimize engine performance using flexible fuels for unmanned aerial vehicles (UAVs). Computational modeling can help characterize the operation of such ignition-assistant devices. In recent years, smoothed particle hydrodynamics (SPH) has proven to be a useful tool for investigating various thermo-fluidic phenomena. SPH discretizes the domain into numerical particles, each representing physical attributes such as mass, density, and temperature. While SPH offers several advantages, its computational demands are significant. Thus, a GPU-accelerated SPH solver using the CUDA framework is developed in this study. The present focus is on studying the temperature distribution and thermal stresses in a hot surface ignition device. The study pursues two main goals. Initially, it involves validating the developed solver across fundamental heat transfer problems with known analytical solutions. These tests involve various boundary conditions in two- and three-dimensional geometries to assess accuracy and effectiveness. Subsequently, a realistic glow plug geometry was modeled under engine-relevant conditions. The predicted temperature history and distribution on the plug surface agree well with the experimental data. Following that, the temperature and thermal stress responses of the plug for different materials were parametrically analyzed. The simulation results show that alumina exhibits a high thermal stress due to its high Young's modulus and thermal expansion coefficient. Meanwhile, β-sialon and silicon nitride exhibit similar behaviors.

References

1.
Kim
,
S.
,
Ryu
,
J. I.
,
Kang
,
S.-G.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Alonso
,
R.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2025
, “
Numerical Investigations of Combustion Dynamics and Thermo-Mechanical Stress in the Ignition Assistance System for Small Aircraft Engines
,”
Combust. Sci. Technol.
,
197
(
5
), pp.
944
975
.10.1080/00102202.2023.2278075
2.
Kim
,
S.
,
Ryu
,
J. I.
,
Motily
,
A.
,
Numkiatsakul
,
P.
,
Alonso
,
R.
,
Lee
,
T.
,
Kriven
,
W.
,
Kim
,
K.
, and
Kweon
,
C. B.
, “
Effect of Heating Device Voltage on Fuel Spray Ignition and Flame Characteristics Under Aviation Propulsion System Conditions
,”
AIAA
Paper No.
2023
-
1652
.10.2514/6.2023-1652
3.
Motily
,
A.
,
Ryu
,
J. I.
,
Kim
,
Y.
,
Kim
,
K.
,
Lee
,
T.
, and
Kweon
,
C.-B.
,
2020
, “
Effects of Cetane Number on High-Pressure Fuel Spray Characteristics With a Hot Surface Ignition Source
,”
AIAA
Paper No.
2020
-
1233
.10.2514/6.2020-2280
4.
Ryu
,
J. I.
,
Motily
,
A.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K.
, and
Kweon
,
C.-B.
,
2020
, “
Ignition Enhancement of F-24 Jet Fuel by a Hot Surface for Aircraft Propulsion Systems
,”
AIAA
Paper No.
2020
-
2142
.10.2514/6.2020-2142
5.
Liang
,
Z.
,
Yu
,
Z.
,
Liu
,
H.
,
Chen
,
L.
, and
Huang
,
X.
,
2022
, “
Combustion and Emission Characteristics of a Compression Ignition Engine Burning a Wide Range of Conventional Hydrocarbon and Alternative Fuels
,”
Energy
,
250
, p.
123717
.10.1016/j.energy.2022.123717
6.
2011
, “
Influence of Spray-Glow Plug Configuration on Cold Start Combustion for High-Speed Direct Injection Diesel Engines
,”
Energy
,
36
(
9
), pp.
5486
5496
.10.1016/j.energy.2011.07.028
7.
Ryu
,
J. I.
,
Motily
,
A.
,
Lee
,
T.
,
Scarcelli
,
R.
,
Som
,
S.
,
Kim
,
K.
, and
Kweon
,
C.-B. M.
,
2020
, “
Ignition of Jet Fuel Assisted by a Hot Surface at Aircraft Compression Ignition Engine Conditions
,”
AIAA
Paper No.
2020
-
3889
.10.2514/6.2020-3889
8.
Motily
,
A. H.
,
Ryu
,
J. I.
,
Kim
,
K.
,
Kim
,
K.
,
Kweon
,
C.-B. M.
, and
Lee
,
T.
,
2021
, “
High-Pressure Fuel Spray Ignition Behavior With Hot Surface Interaction
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5665
5672
.10.1016/j.proci.2020.08.041
9.
Xu Cheng
,
S.
, and
Wallace
,
J. S.
,
2012
, “
Transient Behavior of Glow Plugs in Direct-Injection Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092802
.10.1115/1.4006692
10.
Paulin
,
I.
, and
Godec
,
M.
,
2017
, “
Surface Oxidation of Heating Resistors Made From Kanthal AF: Increasing the Lifetime of Glow Plugs
,”
Vacuum
,
138
, pp.
146
151
.10.1016/j.vacuum.2016.12.007
11.
Karpe
,
B.
,
Klobčar
,
D.
,
Kovač
,
J.
,
Bizjak
,
M.
,
Kosec
,
B.
, and
Bukudur
,
S.
,
2020
, “
Failure Analysis of Diesel Engine Glow Plugs
,”
Eng. Failure Anal.
,
109
, p.
104394
.10.1016/j.engfailanal.2020.104394
12.
Formaggia
,
L.
,
Micheletti
,
S.
,
Sacco
,
R.
, and
Veneziani
,
A.
,
2007
, “
Mathematical Modelling and Numerical Simulation of a Glow-Plug
,”
Appl. Numer. Math.
,
57
(
10
), pp.
1125
1144
.10.1016/j.apnum.2006.09.012
13.
Endiz
,
M.
,
Özcan
,
M.
,
Erişmiş
,
M.
,
Yağci
,
M.
, and
Günay
,
H.
,
2015
, “
The Simulation and Production of Glow Plugs Based on Thermal Modeling
,”
Turk. J. Electr. Eng. Comput. Sci.
,
23
(
7
), pp.
2197
2207
.10.3906/elk-1307-5
14.
Mitsuoka
,
T.
,
2013
, “
Advanced Ceramic Glow Plugs
,”
Ceram. Sci. Technol.
,
3
, pp.
191
206
.10.1002/9783527631971.ch05
15.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2021
, “
Transient Thermo-Mechanical Stress Analysis of Hot Surface Probe Using Sequentially Coupled CFD-FEA Approach
,”
ASME
Paper No
. ICEF2021-67858.10.1115/ICEF2021-67858
16.
Kang
,
S.-G.
,
Ryu
,
J. I.
,
Motily
,
A. H.
,
Numkiatsakul
,
P.
,
Lee
,
T.
,
Kriven
,
W. M.
,
Kim
,
K. S.
, and
Kweon
,
C.-B. M.
,
2022
, “
Thermomechanical Characterization of Hot Surface Ignition Device Using Phenomenological Heat Flux Model
,”
J. Propul. Power
,
38
(
4
), pp.
656
670
.10.2514/1.B38662
17.
Cleary
,
P. W.
, and
Monaghan
,
J. J.
,
1999
, “
Conduction Modelling Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
148
(
1
), pp.
227
264
.10.1006/jcph.1998.6118
18.
Rook
,
R.
,
Yildiz
,
M.
, and
Dost
,
S.
,
2007
, “
Modeling Transient Heat Transfer Using SPH and Implicit Time Integration
,”
Numer. Heat Transfer, Part B Fundam.
,
51
(
1
), pp.
1
23
.10.1080/10407790600762763
19.
Zhuang
,
T.
,
Wu
,
J.
,
Zhang
,
T.
, and
Dong
,
X.
,
2022
, “
A Weakly Compressible Smoothed Particle Hydrodynamics Framework for Melting Multiphase Flow
,”
AIP Advances
,
12
(
2
), p.
025329
.10.1063/5.0057583
20.
Fraga Filho
,
C.
, and
Chacaltana
,
J.
,
2014
, “
Numerical Study of Heat Diffusion Employing the Lagrangian Smoothed Particle Hydrodynamics Method: An Analysis of the Applicability of the Laplacian Operator and the Influence of the Boundaries on the Solution
,”
Int. Rev. Modell. Simul.
,
7
(
6
), pp.
994
1002
.10.15866/iremos.v7i6.4287
21.
Ahamed
,
S.
, and
Kong
,
S.-C.
,
2024
, “
Analysis of Thermomechanical Stress of High-Temperature Ignition Surface Caused by Drop–Wall Interaction at Engine Conditions
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
5
), p.
051006
.10.1115/1.4064820
22.
Subedi
,
K. K.
,
Kong
,
S.-C.
, and
Kweon
,
C.-B. M.
,
2022
, “
Numerical Study of Consecutive Drop/Wall Impacts Using Smoothed Particle Hydrodynamics
,”
Int. J. Multiphase Flow
,
151
, p.
104060
.10.1016/j.ijmultiphaseflow.2022.104060
23.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.10.1007/s11831-010-9040-7
24.
Yang
,
X.-F.
, and
Liu
,
M.-B.
,
2012
, “
Improvement on Stress Instability in Smoothed Particle Hydrodynamics
,”
Acta Phys. Sin.
, 61(22), p.
224701
.10.7498/aps.61.224701
25.
Dutra Fraga Filho
,
C. A.
, and
Dutra Fraga Filho
,
C. A.
,
2019
, “
Smoothed Particle Hydrodynamics Method
,”
Smoothed Particle Hydrodynamics: Fundamentals and Basic Applications in Continuum Mechanics
, Springer, Cham, pp.
17
65
.
26.
Cleary
,
P. W.
,
1998
, “
Modelling Confined Multi-Material Heat and Mass Flows Using SPH
,”
Appl. Math. Modell.
,
22
(
12
), pp.
981
993
.10.1016/S0307-904X(98)10031-8
27.
Carlslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
Oxford
,
University Press
,
Oxford
.
28.
Motily
,
A.
,
2020
,
Evaluation of Hot Surface Ignition Device Performance With High-Pressure Kerosene Fuel Sprays
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
29.
de Faoite
,
D.
,
Browne
,
D. J.
,
Chang-Díaz
,
F. R.
, and
Stanton
,
K. T.
,
2012
, “
A Review of the Processing, Composition, and Temperature-Dependent Mechanical and Thermal Properties of Dielectric Technical Ceramics
,”
J. Mater. Sci.
,
47
(
10
), pp.
4211
4235
.10.1007/s10853-011-6140-1
You do not currently have access to this content.