Abstract

Researchers have extensively studied the heat transfer ability of boiling under steady heating conditions. However, critical thermal failures in industries often involve a sudden and rapid increase in heat flux over a very short duration. This paper attempts to study the effect of transient (periodic) heating on nucleate boiling by comparing steady heat-flux-based pool boiling with that of exponential heat flux. This paper looks at vertical coalescence patterns formed during periodic heating, as single-bubble coalescence is viewed as a precursor to critical heat flux (CHF). An in-house CFD code based on the sharp interface level set method was used to study coalescence patterns under a periodic exponential heat flux of varying excursion rates (ethanol as working fluid). Simulations reveal that while no coalescence is observed in steady heating, various vertical coalescence regimes are identified for transient heating (upon reduction of excursion time): uncoalesced, periodic, chaotic, and chain. An increase in bubble frequency and vertical bubble coalescence is observed with reduced excursion time, while the departure diameter remains nearly constant. The simulations also reveal that for periodic coalescence, the sooner the first heat flux cycle is completed after the departure of the preceding bubble (at the nucleating cavity), the more likely it is for coalescence to occur. For chaotic and chain coalescence, the formation and dampening of oscillations at the interface of a coalescing bubble governs the frequency of coalescence. It is also observed that an increase in surface contact angle results in coalescence occurring at higher excursion rates.

References

1.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
4
), pp.
717
728
.10.1115/1.1471522
2.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
6
), p.
061502
.10.1115/1.4023576
3.
Carey
,
V. P.
,
2020
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
CRC Press, Boca Raton, FL
.
4.
Kumar
,
A.
,
Behura
,
A. K.
,
Rajak
,
D. K.
,
Kumar
,
R.
,
Ahmadi
,
M. H.
,
Sharifpur
,
M.
, and
Bamisile
,
O.
,
2021
, “
Performance of Heat Transfer Mechanism in Nucleate Pool Boiling—A Relative Approach of Contribution to Various Heat Transfer Components
,”
Case Stud. Therm. Eng.
,
24
, p.
100827
.10.1016/j.csite.2020.100827
5.
Su
,
G.-Y.
,
Bucci
,
M.
,
McKrell
,
T.
, and
Buongiorno
,
J.
,
2016
, “
Transient Boiling of Water Under Exponentially Escalating Heat Inputs. Part i: Pool Boiling
,”
Int. J. Heat Mass Transfer
,
96
, pp.
667
684
.10.1016/j.ijheatmasstransfer.2016.01.032
6.
El-Genk
,
M. S.
,
2012
, “
Immersion Cooling Nucleate Boiling of High Power Computer Chips
,”
Energy Convers. Manage.
,
53
(
1
), pp.
205
218
.10.1016/j.enconman.2011.08.008
7.
Cole
,
R.
,
1956
, “
Investigation of Transient Pool Boiling Due to Sudden Large Power Surge
,” Lewis Flight Propulsion Lab., Cleveland, OH, Report No.
NACA-TN-3885
.https://ntrs.nasa.gov/api/citations/19930084729/downloads/19930084729.pdf
8.
Rosenthal
,
M. W.
,
1957
, “
An Experimental Study of Transient Boiling
,”
Nucl. Sci. Eng.
,
2
(
5
), pp.
640
656
.10.13182/NSE57-A25431
9.
Hsu
,
Y.-Y.
, and
Graham
,
R. W.
,
1986
, “
Transport Processes in Boiling and Two-Phase Systems, Including Near-Critical Fluids
,” American Nuclear Society, La Grange Park, IL.
10.
Sakurai
,
A.
, and
Shiotsu
,
M.
,
1977
, “
Transient Pool Boiling Heat Transfer—Part 1: Incipient Boiling Superheat
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
4
), pp.
547
553
.10.1115/1.3450740
11.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
12.
Su
,
G.
,
2015
, “
Experimental Study of Transient Pool Boiling Heat Transfer Under Exponential Power Excursion on Plate-Type Heater
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
13.
Ayoobi
,
A.
,
Khorasani
,
A. F.
,
Tavakoli
,
M. R.
, and
Salimpour
,
M. R.
,
2019
, “
Experimental Study of the Time Period of Continued Heating Rate on the Pool Boiling Characteristics of Saturated Water
,”
Int. J. Heat Mass Transfer
,
137
, pp.
318
327
.10.1016/j.ijheatmasstransfer.2019.03.083
14.
Walunj
,
A.
, and
Alangar
,
S.
,
2019
, “
Experimental Investigation on Transient Pool Boiling Heat Transfer From Rough Surface and Heat Transfer Correlations
,”
Int. J. Heat Technol.
,
37
(
2
), pp.
545
554
.10.18280/ijht.370223
15.
Walunj
,
A.
, and
Sathyabhama
,
A.
,
2018
, “
Transient CHF Enhancement in High Pressure Pool Boiling on Rough Surface
,”
Chem. Eng. Process.: Process Intensif.
,
127
, pp.
145
158
.10.1016/j.cep.2018.03.025
16.
Walunj
,
A.
, and
Sathyabhama
,
A.
,
2016
, “
Dynamic Pool Boiling Heat Transfer Due to Exponentially Increasing Heat Input—A Review
,”
Procedia Technol.
,
25
, pp.
1137
1145
.10.1016/j.protcy.2016.08.229
17.
Sakurai
,
A.
, and
Shiotsu
,
M.
,
1977
, “
Transient Pool Boiling Heat Transfer—Part 2: Boiling Heat Transfer and Burnout
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
4
), pp.
554
560
.10.1115/1.3450741
18.
Sakurai
,
A.
,
Shiotsu
,
M.
,
Hata
,
K.
, and
Fukuda
,
K.
,
2000
, “
Photographic Study on Transitions From Non-Boiling and Nucleate Boiling Regime to Film Boiling Due to Increasing Heat Inputs in Liquid Nitrogen and Water
,”
Nucl. Eng. Des.
,
200
(
1–2
), pp.
39
54
.10.1016/S0029-5493(99)00325-8
19.
Brown
,
E.
,
Yan
,
Y.
, and
Marcum
,
W. R.
,
2020
, “
A Novel Method for Predicting Power Transient CHF Via the Heterogeneous Spontaneous Nucleation Trigger Mechanism
,”
Nucl. Technol.
,
206
(
9
), pp.
1296
1307
.10.1080/00295450.2020.1724730
20.
Hossain
,
M. N.
,
Chakravarty
,
A.
, and
Ghosh
,
K.
,
2021
, “
Influence of Transient Heat Input on Pool Boiling Behaviour
,”
Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference
, Chennai, Tamil Nadu, Dec. 17–20, pp.
2031
2037
.
21.
Sakurai
,
A.
,
Shiotsu
,
M.
, and
Hata
,
K.
,
1992
, “
Boiling Heat Transfer Characteristics for Heat Inputs With Various Increasing Rates in Liquid Nitrogen
,”
Cryogenics
,
32
(
5
), pp.
421
429
.10.1016/0011-2275(92)90069-M
22.
Shiotsu
,
M.
,
Hata
,
K.
,
Takeuchi
,
Y.
,
Hama
,
K.
, and
Sakurai
,
A.
,
1996
, “
Estimation of Kapitza Conductance Effect on Steady and Transient Boiling Heat Transfer in He I Based on Kapitza Conductance Results in He II
,”
Cryogenics
,
36
(
3
), pp.
197
202
.10.1016/0011-2275(96)81612-2
23.
Sakurai
,
A.
,
Shiotsu
,
M.
,
Hata
,
K.
, and
Takeuchi
,
Y.
,
1989
, “
Quasi-Steady Nucleate Boiling and Its Life Caused by Large Stepwise Heat Input in Saturated Pool Liquid He I
,”
Cryogenics
,
29
(
6
), pp.
597
601
.10.1016/0011-2275(89)90115-X
24.
ANSYS,
2009
, “
Ansys Fluent 12.0 Theory Guide—16.7.5 Evaporation-Condensation Model
,” ANSYS, Canonsburg, PA.
25.
Chirammel
,
S. S.
,
Murallidharan
,
J. S.
, and
Sharma
,
A.
,
2023
, “
Computational Modelling and Investigation of Nucleate Boiling With Periodic Exponential Heat Flux-Based Power-Transients
,”
Int. J. Heat Mass Transfer
,
217
, p.
124673
.10.1016/j.ijheatmasstransfer.2023.124673
26.
Chirammel
,
S. S.
,
Sharma
,
A.
, and
Murallidharan
,
J. S.
,
2023
, “
On Ghost Fluid Method-Based Sharp Interface Level Set Method on a Co-Located Grid and Its Comparison With Balanced Force-Based Diffuse Interface Method
,”
J. Comput. Phys.
,
485
, p.
112109
.10.1016/j.jcp.2023.112109
27.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
28.
Urbano
,
A.
,
Tanguy
,
S.
,
Huber
,
G.
, and
Colin
,
C.
,
2018
, “
Direct Numerical Simulation of Nucleate Boiling in Micro-Layer Regime
,”
Int. J. Heat Mass Transfer
,
123
, pp.
1128
1137
.10.1016/j.ijheatmasstransfer.2018.02.104
29.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
127
138
.10.1016/j.ijheatmasstransfer.2006.06.037
30.
Huber
,
G.
,
Tanguy
,
S.
,
Sagan
,
M.
, and
Colin
,
C.
,
2017
, “
Direct Numerical Simulation of Nucleate Pool Boiling at Large Microscopic Contact Angle and Moderate Jakob Number
,”
Int. J. Heat Mass Transfer
,
113
, pp.
662
682
.10.1016/j.ijheatmasstransfer.2017.05.083
31.
Utaka
,
Y.
,
Hu
,
K.
,
Chen
,
Z.
, and
Morokuma
,
T.
,
2018
, “
Measurement of Contribution of Microlayer Evaporation Applying the Microlayer Volume Change During Nucleate Pool Boiling for Water and Ethanol
,”
Int. J. Heat Mass Transfer
,
125
, pp.
243
247
.10.1016/j.ijheatmasstransfer.2018.04.044
32.
Pan
,
Z.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2016
, “
A Saturated-Interface-Volume Phase Change Model for Simulating Flow Boiling
,”
Int. J. Heat Mass Transfer
,
93
, pp.
945
956
.10.1016/j.ijheatmasstransfer.2015.10.044
33.
Mikic
,
B.
,
Rohsenow
,
W.
, and
Griffith
,
P.
,
1970
, “
On Bubble Growth Rates
,”
Int. J. Heat Mass Transfer
,
13
(
4
), pp.
657
666
.10.1016/0017-9310(70)90040-2
34.
Zaksek
,
P.
,
Zupan
,
M.
,
Gregor
,
P.
, and
Golobi
,
I.
,
2020
, “
Investigation of Nucleate Pool Boiling of Saturated Pure Liquids and Ethanol-Water Mixtures on Smooth and Laser-Textured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
24
(
1
), pp.
29
42
.10.1080/15567265.2019.1689590
35.
Gada
,
V. H.
, and
Sharma
,
A.
,
2011
, “
On a Novel Dual-Grid Level-Set Method for Two-Phase Flow Simulation
,”
Numer. Heat Transfer, Part B
,
59
(
1
), pp.
26
57
.10.1080/10407790.2011.540956
You do not currently have access to this content.