Abstract

Clinical trials are already established for high-temperature treatment of localized cancer, i.e., rise of tissue temperature to more than 55 °C as an effective noninvasive method for the treatment of localized cancer. However, as the computational techniques and capacity have enhanced considerably personalized treatment planning has become a manured tool. In the present investigation, a novel treatment planning framework is being proposed for radio frequency (RF) ablation of cancer tissue based on the tomographic image-based actual model. In patient-specific modeling, different thermal parameters like temperature history during ablation, and thermal damage profile have been virtually determined based on Penne's bioheat transfer model with appropriate boundary conditions. This advancement promises to significantly enhance the capabilities of healthcare practitioners in tailoring personalized treatment strategies for their clinical cases. By leveraging simulation outcomes, clinicians can precisely determine the most effective parameters, such as ablation power and frequency. Unfortunately, the current landscape in India presents a scarcity of specialized medical experts in the field of ablation oncology. Moreover, those who practice in this niche often rely on empirical charts rather than data-driven approaches, highlighting a critical need for increased expertise and the integration of advanced simulation technology to optimize cancer tissue ablation procedures. This real-life patient-specific three-dimensional model-based heat transfer model in a data center-based approach will not only guide the medical practitioner but also a greater number of clinicians can use that. Last but not least, optimizing different operating parameters of RF in this patient-centric approach for accurate treatment has also been discussed.

References

1.
Li
,
W. Z.
,
Kong
,
S. Z.
,
Su
,
J. W.
,
Huang
,
J.
, and
Xue
,
H.
,
2020
, “
Efficacy of Transcatheter Arterial Chemoembolization Combined With Sorafenib in Inhibiting Tumor Angiogenesis in a Rabbit VX2 Liver Cancer Model
,”
J. Interv. Med.
,
3
(
1
), pp.
27
33
.10.1016/j.jimed.2020.01.003
2.
Lucidi
,
V.
,
Bohlok
,
A.
,
Liberale
,
G.
,
Bez
,
M.
,
Germanova
,
D.
,
Bouazza
,
F.
,
Demetter
,
P.
, et al.,
2020
, “
Extended Time Interval Between Diagnosis and Surgery Does Not Improve the Outcome in Patients Operated for Resection or Ablation of Breast Cancer Liver Metastases: Surgery of Breast Cancer Liver Metastases
,”
Eur. J. Surg. Oncol.
,
46
(
2
), pp.
229
234
.10.1016/j.ejso.2019.10.016
3.
Collin
,
Y.
,
Paré
,
A.
,
Belblidia
,
A.
,
Létourneau
,
R.
,
Plasse
,
M.
,
Dagenais
,
M.
,
Turcotte
,
S.
, et al.,
2019
, “
Portal Vein Embolization Does Not Affect the Long-Term Survival and Risk of Cancer Recurrence Among Colorectal Liver Metastases Patients: A Prospective Cohort Study
,”
Int. J. Surg.
,
61
, pp.
42
47
.10.1016/j.ijsu.2018.11.029
4.
Townsend
,
A. R.
,
Chong
,
L. C.
,
Karapetis
,
C.
, and
Price
,
T. J.
,
2016
, “
Selective Internal Radiation Therapy for Liver Metastases From Colorectal Cancer
,”
Cancer Treat. Rev.
,
50
, pp.
148
154
.10.1016/j.ctrv.2016.09.007
5.
Kong
,
V. C.
, and
Velec
,
M.
,
2015
, “
Stereotactic Body Radiation Therapy for Liver Cancer: A Review of the Technology
,”
J. Med. Imaging Radiat. Sci.
,
46
(
3
), pp.
343
350
.10.1016/j.jmir.2015.06.005
6.
Dong
,
Y.
,
Song
,
Z.
,
Luo
,
Y.
, and
Ma
,
X.
,
2019
, “
A New Proposal of Utilizing Intraoperative Electron Radiation Therapy on the Surface of Liver to Prevent Postoperative Liver Metastasis of Pancreatic Cancer
,”
Med. Hypotheses
,
126
(
37
), pp.
15
19
.10.1016/j.mehy.2019.02.050
7.
Sun
,
Y.
,
Ma
,
W.
,
Yang
,
Y.
,
He
,
M.
,
Li
,
A.
,
Bai
,
L.
,
Yu
,
B.
, and
Yu
,
Z.
,
2019
, “
Cancer Nanotechnology: Enhancing Tumor Cell Response to Chemotherapy for Hepatocellular Carcinoma Therapy
,”
Asian J. Pharm. Sci.
,
14
(
6
), pp.
581
594
.10.1016/j.ajps.2019.04.005
8.
Power
,
D. G.
, and
Kemeny
,
N. E.
,
2011
, “
Chemotherapy for the Conversion of Unresectable Colorectal Cancer Liver Metastases to Resection
,”
Crit. Rev. Oncol. Hematol.
,
79
(
3
), pp.
251
264
.10.1016/j.critrevonc.2010.08.001
9.
Saberinia
,
A.
,
Alinezhad
,
A.
,
Jafari
,
F.
,
Soltany
,
S.
, and
Sigari
,
R. A.
,
2020
, “
Oncogenic miRNAs and Target Therapies in Colorectal Cancer
,”
Clin. Chim. Acta
,
508
, pp.
77
91
.10.1016/j.cca.2020.05.012
10.
Zhu
,
X. D.
,
Tang
,
Z. Y.
, and
Sun
,
H. C.
,
2020
, “
Targeting Angiogenesis for Liver Cancer: Past, Present, and Future
,”
Genes Dis.
,
7
(
3
), pp.
328
335
.10.1016/j.gendis.2020.03.010
11.
Brace
,
C. L.
,
2009
, “
Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?
,”
Curr. Probl. Diagn. Radiol.
,
38
(
3
), pp.
135
143
.10.1067/j.cpradiol.2007.10.001
12.
Wischhusen
,
J.
, and
Padilla
,
F.
,
2019
, “
Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery Into Tumor Tissue
,”
Irbm
,
40
(
1
), pp.
10
15
.10.1016/j.irbm.2018.11.005
13.
Peng
,
Z.-W.
,
Lin
,
X.-J.
,
Zhang
,
Y.-J.
,
Liang
,
H.-H.
,
Guo
,
R.-P.
,
Shi
,
M.
, and
Chen
,
M.-S.
,
2012
, “
Radiofrequency Ablation Versus Hepatic Resection for the Treatment of Hepatocellular Carcinomas 2 cm or Smaller: A Retrospective Comparative Study
,”
Radiology
,
262
(
3
), pp.
1022
1033
.10.1148/radiol.11110817
14.
Kok
,
H. P.
,
Kotte
,
A. N. T. J.
, and
Crezee
,
J.
,
2017
, “
Planning, Optimisation and Evaluation of Hyperthermia Treatments
,”
Int. J. Hyperthermia
,
33
(
6
), pp.
593
607
.10.1080/02656736.2017.1295323
15.
Kok
,
H. P.
,
Korshuize-van Straten
,
L.
,
Bakker
,
A.
,
de Kroon-Oldenhof
,
R.
,
Geijsen
,
E. D.
,
Stalpers
,
L. J. A.
, and
Crezee
,
J.
,
2017
, “
Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
99
(
4
), pp.
1039
1047
.10.1016/j.ijrobp.2017.07.011
16.
Meyer
,
J.
, and
Toomay
,
S.
,
2014
, “
Update on Treatment of Liver Metastases: Focus on Ablation Therapies
,”
Curr. Oncol. Rep.
,
17
(
1
), pp.
1
6
.10.1007/s11912-014-0420-2
17.
O'Donovan
,
A.
, and
Leech
,
M.
,
2020
, “
Personalised Treatment for Older Adults With Cancer: The Role of Frailty Assessment
,”
Tech. Innov. Patient Support Radiat. Oncol.
,
16
, pp.
30
38
.10.1016/j.tipsro.2020.09.001
18.
Malcomson
,
F. C.
, and
Mathers
,
J. C.
,
2023
, “
Translation of Nutrigenomic Research for Personalised and Precision Nutrition for Cancer Prevention and for Cancer Survivors
,”
Redox Biol.
,
62
, p.
102710
.10.1016/j.redox.2023.102710
19.
Ooi
,
E. H.
,
Lee
,
K. W.
,
Yap
,
S.
,
Khattab
,
M. A.
,
Liao
,
I. Y.
,
Ooi
,
E. T.
,
Foo
,
J. J.
,
Nair
,
S. R.
, and
Mohd Ali
,
A. F.
,
2019
, “
The Effects of Electrical and Thermal Boundary Condition on the Simulation of Radiofrequency Ablation of Liver Cancer for Tumours Located Near to the Liver Boundary
,”
Comput. Biol. Med.
,
106
, pp.
12
23
.10.1016/j.compbiomed.2019.01.003
20.
Singh
,
S.
,
Bhowmik
,
A.
, and
Repaka
,
R.
,
2016
, “
Thermal Analysis of Induced Damage to the Healthy Cell During RFA of Breast Tumor
,”
J. Therm. Biol.
,
58
, pp.
80
90
.10.1016/j.jtherbio.2016.04.002
21.
Gupta
,
P. R.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2023
, “
Effects of Probe Parameters on Radio-Frequency Ablation of Localized Liver Cancer Using a Personalized Patient Treatment Planning
,”
Therm. Sci. Eng. Prog.
,
46
, p.
102236
.10.1016/j.tsep.2023.102236
22.
Dughiero
,
F.
, and
Corazza
,
S.
,
2005
, “
Numerical Simulation of Thermal Disposition With Induction Heating Used for Oncological Hyperthermic Treatment
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
40
46
.10.1007/BF02345121
23.
Temperatwes
,
B.
,
1946
, “
Applied Physiology
,”
Med. J. Aust.
,
2
(
24
), p.
844
.10.5694/j.1326-5377.1946.tb34690.x
24.
Rossmann
,
C.
, and
Haemmerich
,
D.
,
2014
, “
Review of Temperature Dependence of Thermal Properties, Dielectric Properties, and Perfusion of Biological Tissues at Hyperthermic and Ablation Temperatures
,”
Crit. Rev. Biomed. Eng.
,
42
(
6
), pp.
467
492
.10.1615/CritRevBiomedEng.2015012486
25.
Chhabra
,
R. P.
,
2017
,
CRC Handbook of Thermal Engineering
, 2nd ed., Springer, Berlin, Heidelberg.
26.
Hamilton
,
G.
,
1998
, “
Investigations of the Thermal Properties of Human and Animal Tissues
,”
Ph.D. thesis
, University of Glasgow, Glasgow, UK.https://theses.gla.ac.uk/1019/1/1998hamiltonphd.pdf
27.
Jo
,
B.
, and
Aksan
,
A.
,
2010
, “
Prediction of the Extent of Thermal Damage in the Cornea During Conductive Keratoplasty
,”
J. Therm. Biol.
,
35
(
4
), pp.
167
174
.10.1016/j.jtherbio.2010.02.004
28.
Dodde
,
R. E.
,
Miller
,
S. F.
,
Geiger
,
J. D.
, and
Shih
,
A. J.
,
2008
, “
Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021015
.10.1115/1.2902858
29.
Zhang
,
B.
,
Moser
,
M. A. J.
,
Zhang
,
E. M.
,
Luo
,
Y.
, and
Zhang
,
W.
,
2017
, “
A New Approach to Feedback Control of Radiofrequency Ablation Systems for Large Coagulation Zones
,”
Int. J. Hyperthermia
,
33
(
4
), pp.
367
377
.10.1080/02656736.2016.1263365
30.
Sethuraman
,
S.
,
Anand
,
A.
, and
Li
,
J.
,
2014
, “
Integrated Ultrasound Thermometry and Multiphysics Modeling for Liver RF Ablation Monitoring: Ex Vivo Studies
,”
IEEE International Ultrasonics Symposium (IUS)
, Chicago, IL, Sept. 3–6, pp.
1650
1653
.10.1109/ULTSYM.2014.0409
You do not currently have access to this content.