Abstract

This study introduces a Bayesian spatiotemporal modeling approach to solve inverse heat conduction problems (IHCPs), employing penalized splines within a spatiotemporal forward model. The complexity and ill-posed nature of IHCPs, characterized by potential nonexistence, nonuniqueness, or instability of solutions, pose significant challenges for traditional methods. Addressing this, our study presents a spatiotemporal forward model that incorporates spatial, temporal, and interaction terms, accurately capturing the intricate dynamics inherent in IHCPs and using this information as a leverage to solve the inverse problem. We adopted a Bayesian inference framework for the subsequent parameter estimation problem and developed a Gibbs sampling algorithm to sample from the posterior distribution of the model's parameters, enhancing the estimation process. Through case studies on a one-dimensional (1D) heat simulation and a pool boiling experiment using multisensor thermocouple data for heat flux reconstruction, we demonstrate the model's superiority over traditional methods. The inclusion of the spatiotemporal interaction term significantly enhances model performance, indicating its potential for broader application in solving IHCPs. The application of this method in both simulated and real-world scenarios highlights its effectiveness in capturing the spatiotemporal complexities of IHCPs. This work contributes to the field by offering a robust methodology for addressing the spatial and temporal complexities inherent in IHCPs, supported by a comprehensive Bayesian inference framework and the use of a Gibbs sampling algorithm for parameter estimation.

References

1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Clair
,
C. R. S.
, Jr.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
James Beck
,
Hoboken, NJ
.
2.
Chen
,
T.-C.
, and
Liu
,
C.-C.
,
2008
, “
Inverse Estimation of Heat Flux and Temperature on Nozzle Throat-Insert Inner Contour
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3571
3581
.10.1016/j.ijheatmasstransfer.2007.10.029
3.
Luo
,
X.
, and
Yang
,
Z.
,
2017
, “
A New Approach for Estimation of Total Heat Exchange Factor in Reheating Furnace by Solving an Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
112
, pp.
1062
1071
.10.1016/j.ijheatmasstransfer.2017.05.009
4.
Lu
,
T.
,
Han
,
W. W.
,
Jiang
,
P. X.
,
Zhu
,
Y. H.
,
Wu
,
J.
, and
Liu
,
C. L.
,
2015
, “
A Two-Dimensional Inverse Heat Conduction Problem for Simultaneous Estimation of Heat Convection Coefficient, Fluid Temperature and Wall Temperature on the Inner Wall of a Pipeline
,”
Prog. Nucl. Energy
,
81
, pp.
161
168
.10.1016/j.pnucene.2015.01.018
5.
Gonzalez-Hernandez
,
J.-L.
,
Recinella
,
A. N.
,
Kandlikar
,
S. G.
,
Dabydeen
,
D.
,
Medeiros
,
L.
, and
Phatak
,
P.
,
2020
, “
An Inverse Heat Transfer Approach for Patient- Specific Breast Cancer Detection and Tumor Localization Using Surface Thermal Images in the Prone Position
,”
Infrared Phys. Technol.
,
105
, p.
103202
.10.1016/j.infrared.2020.103202
6.
Stolz
,
G.
, Jr.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
82
(
1
), pp.
20
25
.10.1115/1.3679871
7.
Burggraf
,
O. R.
,
1964
, “
An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
86
(
3
), pp.
373
380
.10.1115/1.3688700
8.
Mirsepassi
,
T. J.
,
1958
,
Heat-Transfer Charts for Time-Variable Boundary Conditions: Semi- Infinite Solid. Part I
,
Aerojet-General Corporation
,
New York
.
9.
Calder’on
,
A. P.
,
2006
, “
On an Inverse Boundary Value Problem
,”
Comput. Appl. Math.
,
25
, pp.
133
138
.10.1590/S0101-82052006000200002
10.
Tikhonov
,
A. N.
, and
Arsenin
,
V. I.
,
1977
,
Solutions of Ill-Posed Problems
,
F.
John
, ed.,
Wiley
,
Hoboken, NJ
.
11.
Orlande
,
H. R. B.
,
2012
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
3
), p.
031011
.10.1115/1.4005131
12.
Hensel
,
E.
,
1991
,
Inverse Theory and Applications for Engineers
,
Prentice Hall
,
Englewood Cliffs, NJ
.
13.
Frankel
,
J. I.
,
1996
, “
Residual-Minimization Least-Squares Method for Inverse Heat Conduction
,”
Comput. Math. Appl.
,
32
(
4
), pp.
117
130
.10.1016/0898-1221(96)00130-7
14.
Vogel
,
C. R.
,
2002
,
Computational Methods for Inverse Problems
,
Siam
,
Philadelphia, PA
.
15.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3927
3941
.10.1016/j.ijheatmasstransfer.2004.02.028
16.
Olabiyi
,
R.
,
Pandey
,
H.
,
Hu
,
H.
, and
Iquebal
,
A.
,
2023
, “
A Bayesian Spatio-Temporal Modeling Approach to the Inverse Heat Conduction Problem
,”
ASME
Paper No. HT2023-107671.10.1115/HT2023-107671
17.
Kitić
,
S.
,
Albera
,
L.
,
Bertin
,
N.
, and
Gribonval
,
R.
,
2016
, “
Physics-Driven Inverse Problems Made Tractable With Cosparse Regularization
,”
IEEE Trans. Signal Process.
,
64
(
2
), pp.
335
348
.10.1109/TSP.2015.2480045
18.
Grana
,
D.
,
Azevedo
,
L.
,
De Figueiredo
,
L.
,
Connolly
,
P.
, and
Mukerji
,
T.
,
2022
, “
Probabilistic Inversion of Seismic Data for Reservoir Petrophysical Characterization: Review and Examples
,”
Geophysics
,
87
(
5
), pp.
M199
M216
.10.1190/geo2021-0776.1
19.
Villa
,
U.
,
Petra
,
N.
, and
Ghattas
,
O.
,
2021
, “
hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and Linearized Bayesian Inference
,”
ACM Trans. Math. Software
,
47
(
2
), pp.
1
34
.10.1145/3428447
20.
Lan
,
S.
,
Li
,
S.
, and
Shahbaba
,
B.
,
2022
, “
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks
,”
SIAM/ASA J. Uncertainty Quantif.
,
10
(
4
), pp.
1684
1713
.10.1137/21M1439456
21.
Knorr-Held
,
L.
,
2000
, “
Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk
,”
Stat. Med.
,
19
(
17–18
), pp.
2555
2567
.10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
22.
Chang
,
C.-W.
,
Liu
,
C.-H.
, and
Wang
,
C.-C.
,
2018
, “
Review of Computational Schemes in Inverse Heat Conduction Problems
,”
Smart Sci.
,
6
(
1
), pp.
94
103
.10.1080/23080477.2017.1408987
23.
Hadamard
,
J.
,
1923
,
Lectures on Cauchy's Problem in Linear Partial Differential Equations
, Vol.
15
,
Yale University Press
,
New Haven, CT
.
24.
Singh
,
S.
,
Jain
,
P. K.
, and
Rizwan-uddin
,
2008
, “
Analytical Solution to Transient Heat Conduction in Polar Coordinates With Multiple Layers in Radial Direction
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
261
273
.10.1016/j.ijthermalsci.2007.01.031
25.
Kaipio
,
J. P.
, and
Fox
,
C.
,
2011
, “
The Bayesian Framework for Inverse Problems in Heat Transfer
,”
Heat Transfer Eng.
,
32
(
9
), pp.
718
753
.10.1080/01457632.2011.525137
26.
Carasso
,
A. S.
,
1992
, “
Space Marching Difference Schemes in the Nonlinear Inverse Heat Conduction Problem
,”
Inverse Probl.
,
8
(
1
), pp.
25
43
.10.1088/0266-5611/8/1/002
27.
Carasso
,
A. S.
,
1993
, “
Slowly Divergent Space Marching Schemes in the Inverse Heat Conduction Problem
,”
Numer. Heat Transfer
,
23
(
1
), pp.
111
126
.10.1080/10407799308914892
28.
Murio
,
D. A.
,
1989
, “
The Mollification Method and the Numerical Solution of the Inverse Heat Conduction Problem by Finite Differences
,”
Comput. Math. Appl.
,
17
(
10
), pp.
1385
1396
.10.1016/0898-1221(89)90022-9
29.
Al-Khalidy
,
N.
,
1998
, “
On the Solution of Parabolic and Hyperbolic Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3731
3740
.10.1016/S0017-9310(98)00102-1
30.
Eld’en
,
L.
,
1995
, “
Numerical Solution of the Sideways Heat Equation by Difference Approximation in Time
,”
Inverse Probl.
,
11
(
4
), p.
913
.10.1088/0266-5611/11/4/017
31.
Krutz
,
G. W.
,
Schoenhals
,
R. J.
, and
Horc
,
P. S.
,
1978
, “
Application of the Finite-Element Method to the Inverse Heat Conduction Problem
,”
Numer. Heat Transfer, Part B
,
1
(
4
), pp.
489
498
.10.1080/10407797809412181
32.
Engl
,
H. W.
, and
Rundell
,
W.
,
1995
,
Inverse Problems in Diffusion Processes: Proceedings of the GAMM-SIAM Symposium
, Vol. 78,
Siam
,
Philadelphia, PA
.
33.
Hon
,
Y. C.
, and
Wei
,
T.
,
2004
, “
A Fundamental Solution Method for Inverse Heat Conduction Problem
,”
Eng. Anal. Boundary Elements
,
28
(
5
), pp.
489
495
.10.1016/S0955-7997(03)00102-4
34.
Shidfar
,
A.
, and
Pourgholi
,
R.
,
2006
, “
Numerical Approximation of Solution of an Inverse Heat Conduction Problem Based on Legendre Polynomials
,”
Appl. Math. Comput.
,
175
(
2
), pp.
1366
1374
.10.1016/j.amc.2005.08.040
35.
Sladek
,
J.
,
Sladek
,
V.
, and
Hon
,
Y. C.
,
2006
, “
Inverse Heat Conduction Problems by Meshless Local Petrov–Galerkin Method
,”
Eng. Anal. Boundary Elem.
,
30
(
8
), pp.
650
661
.10.1016/j.enganabound.2006.03.003
36.
Shidfar
,
A.
,
Darooghehgimofrad
,
Z.
, and
Garshasbi
,
M.
,
2009
, “
Note on Using Radial Basis Functions and Tikhonov Regularization Method to Solve an Inverse Heat Conduction Problem
,”
Eng. Anal. Boundary Elem.
,
33
(
10
), pp.
1236
1238
.10.1016/j.enganabound.2009.03.007
37.
Duda
,
P.
,
2017
, “
Solution of Inverse Heat Conduction Problem Using the Tikhonov Regularization Method
,”
J. Therm. Sci.
,
26
(
1
), pp.
60
65
.10.1007/s11630-017-0910-2
38.
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2013
, “
Estimation Metrics and Optimal Regularization in a Tikhonov Digital Filter for the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
62
, pp.
31
39
.10.1016/j.ijheatmasstransfer.2013.02.052
39.
Engl
,
H.-W.
,
Hanke
,
M.
, and
Neubauer
,
A.
,
1996
,
Regularization of Inverse Problems
,
Springer Science & Business Media
,
New York
.
40.
Vakili
,
S.
, and
Gadala
,
M. S.
,
2013
, “
Low-Cost Surrogate Model Based Evolutionary Optimization Solvers for Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
263
273
.10.1016/j.ijheatmasstransfer.2012.09.009
41.
Ding
,
P.
, and
Sun
,
D.
,
2015
, “
Resolution of Unknown Heat Source Inverse Heat Conduction Problems Using Particle Swarm Optimization
,”
Numer. Heat Transfer, Part B
,
68
(
2
), pp.
158
168
.10.1080/10407790.2015.1012446
42.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.10.1115/1.4053800
43.
He
,
Z.
,
Ni
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2021
, “
A Physics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials
,”
Mater. Today Commun.
,
28
, p.
102719
.10.1016/j.mtcomm.2021.102719
44.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
Hierarchical Bayesian Models for Inverse Problems in Heat Conduction
,”
Inverse Probl.
,
21
(
1
), pp.
183
206
.10.1088/0266-5611/21/1/012
45.
Lin
,
S.-M.
,
Chen
,
C.-K.
, and
Yang
,
Y.-T.
,
2004
, “
A Modified Sequential Approach for Solving Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2669
2680
.10.1016/j.ijheatmasstransfer.2003.11.027
46.
Ijaz
,
U. Z.
,
Khambampati
,
A. K.
,
Kim
,
M.-C.
,
Kim
,
S.
, and
Kim
,
K.-Y.
,
2007
, “
Estimation of Time-Dependent Heat Flux and Measurement Bias in Two-Dimensional Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
50
(
21–22
), pp.
4117
4130
.10.1016/j.ijheatmasstransfer.2007.02.037
47.
Backus
,
G.
,
1970
, “
Inference From Inadequate and Inaccurate Data, I
,”
Proc. Natl. Acad. Sci. U. S. A.
,
65
(
1
), pp.
1
7
.10.1073/pnas.65.1.1
48.
Westwater
,
E. R.
, and
Strand
,
O. N.
,
1968
, “
Statistical Information Content of Radiation Measurements Used in Indirect Sensing
,”
J. Atmos. Sci.
,
25
(
5
), pp.
750
758
.10.1175/1520-0469(1968)025<0750:SICORM>2.0.CO;2
49.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2006
,
Statistical and Computational Inverse Problems
, Vol. 160,
Springer Science & Business Media
,
New York
.
50.
Calvetti
,
D.
, and
Somersalo
,
E.
,
2015
, “
Statistical Methods in Imaging
,”
Handbook of Mathematical Methods in Imaging
, Springer, New York.10.1007/978-0-387-92920-0_21
51.
Zamparo
,
M.
,
Stramaglia
,
S.
,
Banavar
,
J. R.
, and
Maritan
,
A.
,
2012
, “
Inverse Problem for Multivariate Time Series Using Dynamical Latent Variables
,”
Physica A
,
391
(
11
), pp.
3159
3169
.10.1016/j.physa.2012.01.037
52.
Lan
,
S.
,
Li
,
S.
, and
Pasha
,
M.
,
2022
, “
Bayesian Spatiotemporal Modeling for Inverse Problems
,”
arXiv:2204.10929
.10.48550/arXiv.2204.10929
53.
Guisan
,
A.
, and
Thuiller
,
W.
,
2005
, “
Predicting Species Distribution: Offering More than Simple Habitat Models
,”
Ecol. Lett.
,
8
(
9
), pp.
993
1009
.10.1111/j.1461-0248.2005.00792.x
54.
Keirstead
,
J.
,
Jennings
,
M.
, and
Sivakumar
,
A.
,
2012
, “
A Review of Urban Energy System Models: Approaches, Challenges and Opportunities
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
3847
3866
.10.1016/j.rser.2012.02.047
55.
Wikle
,
C. K.
,
Zammit-Mangion
,
A.
, and
Cressie
,
N.
,
2019
,
Spatio-Temporal Statistics With R
,
CRC Press
,
Boca Raton, FL
.
56.
Brémaud
,
P.
,
2013
,
Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues
, Vol. 31,
Springer Science & Business Media
,
New York
.
57.
Hoff
,
P. D.
,
2009
,
A First Course in Bayesian Statistical Methods
, Vol. 580,
Springer
,
New York
.
58.
Roh
,
H.-S.
,
2014
, “
Heat Transfer Mechanisms in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
68
, pp.
332
342
.10.1016/j.ijheatmasstransfer.2013.09.037
You do not currently have access to this content.