Abstract

This report documents evaluation of simultaneous estimation of multiple interfacial heat transfer coefficients (HTCs) using transient measurements from an experiment designed for steady-state operation. The design of a mirror system for directing X-rays under cryogenic conditions requires knowledge of the interfacial HTC (contact conductance) between silicon and indium. An experimental apparatus was constructed to measure temperatures in a stack of five 7.62-mm thick pucks of silicon separated by 0.1-mm thick sheets of indium, which is operated under cryogenic temperatures in vacuum. Multiple pucks and interfaces are incorporated into the apparatus to allow evaluation of HTCs for surfaces of different roughness from a single experiment. Analysis of the sensitivity of each of the measured temperatures to each of the unknown HTCs reveals lack of linear independence of these sensitivities and suggests the recovery of the HTCs will be challenging. Artificially noised “data” were created from two different computational models by solving for temperatures and adding random Gaussian noise with a specified standard deviation. These data are subsequently analyzed using two different iterative parameter estimation methods: a Levenberg scheme and a Tikhonov iterative scheme. The required sensitivity matrix is computed using forward finite difference approximations. The results for the heat transfer coefficients for this model problem suggest that coefficients cannot be estimated independently, but the ratios relative to one of the unknowns can be recovered.

References

1.
BERKELEY LAB
,
2023
, “
About the ALS
,” accessed Aug. 4, 2023, https://als.lbl.gov/about/about-the-als/
2.
BERKELEY LAB
,
2023
, “
ALS Work Using Protein Crystallography
,” accessed Aug. 9, 2023, https://als.lbl.gov/tag/protein-crystallography/
3.
Cutler
,
G.
,
Cocco
,
D.
,
DiMasi
,
E.
,
Morton
,
S.
,
Sanchez del Rio
,
M.
, and
Padmore
,
H.
,
2020
, “
A Cantilevered Liquid-Nitrogen-Cooled Silicon Mirror for the Advanced Light Source Upgrade
,”
J. Synchrotron Radiat.
,
27
(
5
), pp.
1131
1140
.10.1107/S1600577520008930
4.
Cutler
,
G.
,
Bryant
,
D.
,
Cocco
,
D.
,
DiMasi
,
E.
,
Mccombs
,
K.
,
Morton
,
S.
,
del Rio
,
M. S.
,
Smith
,
N.
, and
Padmore
,
H.
,
2020
, “
An Update on Development of a Cryogenically Cooled-Silicon Mirror for the Advanced Light Source Upgrade Project
,”
Advances in X-Ray/EUV Optics and Components XV
, Aug. 24–Sept. 4, pp.
50
56
.10.1117/12.2568101
5.
Cutler
,
G.
,
Cocco
,
D.
,
Bentley
,
B.
,
Cervantes
,
M.
,
Chavez
,
P.
,
Chrzan
,
J.
,
DiMaggio
,
S.
, et al.,
2023
, “
Experimental Testing of a Prototype Cantilevered Liquid-Nitrogen-Cooled Silicon Mirror
,”
J. Synchrotron Radiat.
,
30
(
1
), pp.
76
83
.10.1107/S1600577522010700
6.
Khounsary
,
A. M.
,
Chojnowski
,
D.
,
Assoufid
,
L.
, and
Worek
,
W. M.
,
1997
, “
Thermal Contact Resistance Across a Copper-Silicon Interface
,” High Heat Flux Synchrotron Radiation Beamlines, San Diego, CA, July 27–Aug. 1, pp.
45
51
.10.1117/12.294497
7.
Takeuchi
,
T.
,
Tanaka
,
M.
,
Senba
,
Y.
,
Ohashi
,
H.
, and
Goto
,
S.
,
2011
, “
Thermal-Contact-Conductance Measurement for High-Heat-Load Optics Components at SPring-8
,”
Advances in X-Ray/EUV Optics and Components VI
, San Diego, CA, Aug. 21–25, pp.
303
308
.10.1117/12.894612
8.
Asano
,
M.
,
Ogata
,
J.
, and
Yosinaga
,
Y.
,
1993
, “
Quantitative Evaluation of Contact Thermal Conductance in a Vacuum as a Result of Simulating the Effect of Cooling
,”
High Heat Flux Engineering
, San Diego, CA, July 19–24, pp.
652
656
.10.1117/12.140520
9.
Marion
,
P.
,
Zhang
,
L.
,
Vallet
,
L.
, and
Lesourd
,
M.
,
2004
, “
Thermal Contact Resistance Study
,”
Proceedings of MEDSI
, Grenoble, France, May 24–27.
10.
Fieberg
,
C.
, and
Kneer
,
R.
,
2008
, “
Determination of Thermal Contact Resistance From Transient Temperature Measurements
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1017
1023
.10.1016/j.ijheatmasstransfer.2007.05.004
11.
Woodbury
,
K. A.
,
Najafi
,
H.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2023
,
Inverse Heat Conduction: Ill-Posed Problems
, 2nd ed.,
Wiley, Inc.
,
Hoboken, NJ
.
12.
Beck
,
J. V.
,
1969
, “
Determination of Optimum, Transient Experiments for Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
5
), pp.
621
633
.10.1016/0017-9310(69)90043-X
13.
Bi
,
D.
,
Chen
,
H.
, and
Ye
,
T.
,
2012
, “
Influences of Temperature and Contact Pressure on Thermal Contact Resistance at Interfaces at Cryogenic Temperatures
,”
Cryogenics
,
52
(
7–9
), pp.
403
409
.10.1016/j.cryogenics.2012.03.006
14.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
15.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Non-Linear Problems in Least Squares
,”
Q. Appl. Math.
,
2
(
2
), pp.
164
168
.10.1090/qam/10666
16.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
17.
Marquaridt
,
D. W.
,
1970
, “
Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation
,”
Technometrics
,
12
(
3
), pp.
591
612
.10.2307/1267205
18.
Aster
,
R. C.
,
Orchers
,
B.
, and
Thurber
,
C. H.
,
2019
,
Parameter Estimation and Inverse Problems
, 3rd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
19.
Hansen
,
P. C.
,
1998
,
Rank-Deficient and Discrete Ill-Posed Problems
,
Siam
,
Philadelphia, PA
.
20.
Woodbury
,
K. A.
,
1990
, “
Effect of Thermocouple Sensor Dynamics on Surface Heat Flux Predictions Obtained Via Inverse Heat Transfer Analysis
,”
Int. J. Heat Mass Transfer
,
33
(
12
), pp.
2641
2649
.10.1016/0017-9310(90)90200-E
21.
Howell
,
J. R.
,
Menguc
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2021
,
Thermal Radiation Heat Transfer, Seventh
,
CRC Press
,
Boca Raton, FL, p. 859
.
You do not currently have access to this content.