Abstract

Tumors can be detected from a temperature gradient due to high vascularization and increased metabolic activity of cancer cells. Thermal infrared images have been recognized as potential alternatives to detect these tumors. However, even the use of artificial intelligence directly on these images has failed to accurately locate and detect the tumor size due to the low sensitivity of temperatures and position within the breast. Thus, we aimed to develop techniques based on applying the thermal impedance method and artificial intelligence to determine the origin of the heat source (abnormal cancer metabolism) and its size. The low sensitivity to tiny and deep tumors is circumvented by utilizing the concept of thermal impedance and artificial intelligence techniques such as deep learning. We describe the development of a thermal model and the creation of a database based on its solution. We also outline the choice of detectable parameters in the thermal image, the use of deep learning libraries, and network training using convolutional neural networks (CNNs). Lastly, we present tumor location and size estimates based on thermographic images obtained from simulated thermal models of a breast, using Cartesian geometry and a scanned geometric shape of an anatomical phantom model.

References

1.
Sree
,
S. V.
,
Ng
,
E. Y.-K.
,
Acharya
,
U.,R.
, and
Tan
,
W.
,
2010
, “
Breast Imaging Systems: A Review and Comparative Study
,”
J. Mech. Med. Biol.
,
10
(
1
), pp.
5
34
.10.1142/S0219519410003277
2.
Ghoneim
,
A.
,
Muhammad
,
G.
, and
Hossain
,
M. S.
,
2020
, “
Cervical Cancer Classification Using Convolutional Neural Networks and Extreme Learning Machines
,”
Future Gener. Comput. Syst.
,
102
, pp.
643
649
.10.1016/j.future.2019.09.015
3.
Reddy
,
T. V.
,
Ganesh
,
R.
,
Chandra
,
S. P.
, and
Kavya
,
R.
,
2023
, “
Thyroid Lesion Detection Using Deep Learning Techniques
,”
Int. Res. J. Modernization Eng. Technol. Sci.
,
5
(
3
), pp.
2949
2953
.10.56726/IRJMET S34963
4.
Tutsoy
,
O.
,
Polat
,
A.
,
Colak
,
S.
, and
Balikci
,
K.
,
2020
, “
Development of a Multi-Dimensional Parametric Model With Non-Pharmacological Policies for Predicting the Covid-19 Pandemic Casualties
,”
IEEE Access
,
8
, pp.
225272
225283
.10.1109/ACCESS.2020.3044929
5.
Abhisheka
,
B.
,
Biswas
,
S. K.
, and
Purkayastha
,
B.
,
2023
, “
A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning
,”
Arch. Comput. Methods Eng.
,
30
(
8
), pp.
5023
5052
.10.1007/s11831-023-09968-z
6.
Ravikumar
,
A.
,
Sriraman
,
H.
,
Saleena
,
B.
, and
Prakash
,
B.
,
2023
, “
Selecting the Optimal Transfer Learning Model for Precise Breast Cancer Diagnosis Utilizing Pre-Trained Deep Learning Models and Histopathology Images
,”
Health Technol.
,
13
(
5
), pp.
721
745
.10.1007/s12553-023-00772-0
7.
Trang
,
N. T. H.
,
Quynh
,
L. K.
,
An
,
P. L.
, and
Dang
,
T. N.
,
2023
, “
Development of an Artificial Intelligence-Based Breast Cancer Detection Model by Combining Mammograms and Medical Health Records
,”
Diagnostics
,
13
(
3
), p.
346
.10.3390/diagnostics13030346
8.
Majumdar
,
S.
,
Pramanik
,
P.
, and
Sarkar
,
R.
,
2023
, “
Gamma Function Based Ensemble of Cnn Models for Breast Cancer Detection in Histopathology Images
,”
Exp. Syst. Appl.
,
213
, p.
119022
.10.1016/j.eswa.2022.119022
9.
Desai
,
M.
, and
Shah
,
M.
,
2021
, “
An Anatomization on Breast Cancer Detection and Diagnosis Employing Multi-Layer Perceptron Neural Network (MLP) and Convolutional Neural Network (CNN)
,”
Clin. eHealth
,
4
, pp.
1
11
.10.1016/j.ceh.2020.11.002
10.
Tsochatzidis, L., Koutla, P., Costaridou, L., and Pratikakis, I., 2021, “Integrating Segmentation Information Into CNN for Breast Cancer Diagnosis of Mammographic Masses,”
Comput. Methods Programs Biomed
, 200, pp.
105913
105922
.10.1016/j.cmpb.2020.105913
11.
Parisky
,
Y.
,
Sardi
,
A.
,
Hamm
,
R.
,
Hughes
,
K.
,
Esserman
,
L.
,
Rust
,
S.
, and
Callahan
,
K.
,
2003
, “
Efficacy of Computerized Infrared Imaging Analysis to Evaluate Mammographically Suspicious Lesions
,”
Am. J. Roentgenol.
,
180
(
1
), pp.
263
269
.10.2214/ajr.180.1.1800263
12.
Arora
,
N.
,
Martins
,
D.
,
Ruggerio
,
D.
,
Tousimis
,
E.
,
Swistel
,
A. J.
,
Osborne
,
M. P.
, and
Simmons
,
R. M.
,
2008
, “
Effectiveness of a Noninvasive Digital Infrared Thermal Imaging System in the Detection of Breast Cancer
,”
Am. J. Surg.
,
196
(
4
), pp.
523
526
.10.1016/j.amjsurg.2008.06.015
13.
Kapoor
,
P.
, and
Prasad
,
S.
,
2010
, “
Image Processing for Early Diagnosis of Breast Cancer Using Infrared Images
,”
The 2nd International Conference on Computer and Automation Engineering
(
ICCAE
), Singapore, Feb. 26–28, pp.
564
566
.10.1109/ICCAE.2010.5451827
14.
Mitra
,
S.
, and
Balaji
,
C.
,
2010
, “
A Neural Network Based Estimation of Tumour Parameters From a Breast Thermogram
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4714
4727
.10.1016/j.ijheatmasstransfer.2010.06.020
15.
Das
,
K.
, and
Mishra
,
S. C.
,
2015
, “
Simultaneous Estimation of Size, Radial and Angular Locations of a Malignant Tumor in a 3-d Human Breast–a Numerical Study
,”
J. Therm. Biol.
,
52
, pp.
147
156
.10.1016/j.jtherbio.2015.07.001
16.
Figueiredo
,
A. A. A.
,
Fernandes
,
H. C.
, and
Guimaraes
,
G.
,
2018
, “
Experimental Approach for Breast Cancer Center Estimation Using Infrared Thermography
,”
Infrared Phys. Technol.
,
95
, pp.
100
112
.10.1016/j.infrared.2018.10.027
17.
Menegaz
,
G. L.
,
Tsuruta
,
K. M.
,
Finzi Neto
,
R. M.
,
Steffen
,
V.
, Jr
,
Araujo
,
C. A.
, and
Guimarães
,
G.
,
2019
, “
Use of the Electromechanical Impedance Method in the Detection of Inclusions: Application to Mammary Tumors
,”
Struct. Health Monit.
,
20
(
3
), pp.
818
833
.10.1177/1475921718825138
18.
Menegaz
,
G. L.
, and
Guimaraes
,
G.
,
2019
, “
Development of a New Technique for Breast Tumor Detection Based on Thermal Impedance and a Damage Metric
,”
Infrared Phys. Technol.
,
97
, pp.
401
410
.10.1016/j.infrared.2019.01.019
19.
Jha
,
S.
,
Khalf
,
M. F.
, and
Karthick
,
M.
,
2023
, “
Convolutional Neural Networks for Breast Cancer Detection Using Regions of Interest From Infrared Images
,”
Tamjeed J. Healthcare Eng. Sci. Technol.
,
1
(
2
), pp.
44
53
.10.59785/tjhest.v1i2.25
20.
Tsietso
,
D.
,
Yahya
,
A.
,
Samikannu
,
R.
,
Tariq
,
M. U.
,
Muhammad
,
B.
,
Qureshi
,
B.
, and
Koubaa
,
A.
,
2023
, “
Multiinput Deep Learning Approach for Breast Cancer Screening Using Thermal Infrared Imaging and Clinical Data
,”
IEEE Access
,
11
, pp.
52101
52116
.10.1109/ACCESS.2023.3280422
21.
Mammoottil
,
M. J.
,
Kulangara
,
L. J.
,
Cherian
,
A. S.
,
Mohandas
,
P.
,
Hasikin
,
K.
, and
Mahmud
,
M.
,
2022
, “
Detection of Breast Cancer From Five-View Thermal Images Using Convolutional Neural Networks
,”
J. Healthcare Eng.
,
2022
, pp.
1
15
.10.1155/2022/4295221
22.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
You do not currently have access to this content.