Abstract

This study investigated the effusion film cooling on a turbine leading edge model. The pressure-sensitive paint (PSP) technique was employed to analyze the film cooling effectiveness. Three different leading edge profiles were tested, including a semicylinder and two elliptical models. Effusion cooling was achieved by employing closely spaced small holes, and stereolithography was utilized to create the perforated region. The study examined the impact of different blowing ratios (0.4, 0.8, and 1.2) while maintaining a unity density ratio. For benchmark testing purposes, three rows of film cooling holes on these leading edge models were also studied for traditional film cooling scenarios. The film cooling rows consisted of 15 holes positioned at the stagnation line (0 deg) and ±30 deg away from it. All test models were placed in a low-speed wind tunnel for experimentation at a Reynolds number of 100,000. Two different streamwise spacings of the effusion holes were examined in this study. The results indicate that effusion cooling was more effective in cooling compared to traditional film cooling methods. When considering the same leading edge shape, the adiabatic cooling effectiveness of effusion cooling was 30–100% higher than that of traditional film cooling. It was observed that increasing the streamwise spacing had a negative impact on the cooling effectiveness, regardless of the leading edge profile being used. Furthermore, variations in blowing ratio did not significantly affect the effectiveness of effusion cooling, and no noticeable blow-off of coolant was observed.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
McGovern
,
K.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.10.1115/1.555434
3.
Hyams
,
D.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
. 10.1115/1.555435
4.
Brittingham
,
R.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
133
145
.10.1115/1.555419
5.
Luckey
,
D.
,
Winstanley
,
D.
,
Hanus
,
G.
, and
L'Ecuyer
,
M.
,
1977
, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications
,”
J. Aircr.
,
14
(
5
), pp.
494
501
.10.2514/3.58806
6.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.10.1115/1.3262169
7.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.10.1115/1.2928023
8.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1993
, “
Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
36
(
15
), pp.
3723
3730
.10.1016/0017-9310(93)90052-8
9.
Ou
,
S.
,
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer: Effect of Film Hole Row Location
,”
ASME J. Turbomach.
,
114
(
4
), pp.
716
723
.10.1115/1.2928024
10.
Vanfossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1995
, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME.
, 117(3), pp. 597–603.10.1115/1.2822619
11.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
.10.1115/1.2098789
12.
Gao
,
Z.
, and
Han
,
J.-C.
,
2009
, “
Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
131
(
6
), p.
061701
.10.1115/1.3082413
13.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2001
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.10.1115/1.1343457
14.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1991
, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
(
3
), pp.
472
478
.10.1115/1.2927898
15.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,”
ASME
Paper No. 97-GT-296. 10.1115/97-GT-296
16.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.10.1016/j.ijheatmasstransfer.2013.07.071
17.
Andrews
,
G.
,
Asere
,
A.
,
Mkpadi
,
M.
, and
Tirmahi
,
A.
,
1986
, “
Transpiration Cooling: Contribution of Film Cooling to the Overall Cooling Effectiveness
,”
Int. J. Turbo and Jet Engines.,
3(2–3), pp. 245–256.10.1515/TJJ.1986.3.2-3.245
18.
Eckert
,
E. R. G.
, and
Esgar
,
J. B.
,
1951
, “
Survey of Advantages and Problems Associated With Transpiration Cooling and Film Cooling of Gas-Turbine Blades
,” Report No.
NACA-RM-E50K15
.https://ntrs.nasa.gov/api/citations/19930086539/downloads/19930086539.pdf
19.
Natsui
,
G.
,
Johnson
,
P.
,
Torrance
,
M.
,
Ricklick
,
M.
, and
Kapat
,
J.
, “
The Effect of Transpiration on Discrete Injection for Film Cooling
,” ASME Paper No. GT2011-46138.10.1115/GT2011-46138
20.
Huang
,
Z.
,
Xiong
,
Y.-B.
,
Liu
,
Y.-Q.
,
Jiang
,
P.-X.
, and
Zhu
,
Y.-H.
,
2015
, “
Experimental Investigation of Full-Coverage Effusion Cooling Through Perforated Flat Plates
,”
Appl. Therm. Eng.
,
76
, pp.
76
85
.10.1016/j.applthermaleng.2014.11.056
21.
Huang
,
G.
,
Min
,
Z.
,
Yang
,
L.
,
Jiang
,
P.-X.
, and
Chyu
,
M.
,
2018
, “
Transpiration Cooling for Additive Manufactured Porous Plates With Partition Walls
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1076
1087
.10.1016/j.ijheatmasstransfer.2018.03.110
22.
Calderon
,
L.
,
Curbelo
,
A.
,
Gupta
,
G.
, and
Kapat
,
J. S.
, “
Adiabatic Film Cooling Effectiveness of a LAM Fabricated Porous Leading Edge Segment of a Turbine Blade
,” ASME Paper No. GT2018-77114.10.1115/GT2018-77114
23.
Huang
,
I.-C.
,
Lin
,
K.-H.
,
Huang
,
C.-Y.
, and
Liu
,
Y.-H.
,
2023
, “
Experimental Investigation of Effusion Film Cooling on a Cylindrical Leading Edge Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
11
), p.
111004
.10.1115/1.4062955
24.
Chowdhury
,
N. H.
,
Qureshi
,
S. A.
,
Zhang
,
M.
, and
Han
,
J.-C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
, pp.
895
908
.10.1016/j.ijheatmasstransfer.2017.08.020
25.
Huang
,
C.-Y.
,
Wan
,
S.-A.
, and
Hu
,
Y.-H.
,
2017
, “
Oxygen and Nitrogen Gases Mixing in T-Type Micromixers Visualized and Quantitatively Characterized Using Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
111
, pp.
520
531
.10.1016/j.ijheatmasstransfer.2017.03.083
26.
Huang
,
C.-Y.
,
Hu
,
Y.-H.
,
Wan
,
S.-A.
, and
Nagai
,
H.
,
2020
, “
Application of Pressure-Sensitive Paint for the Characterization of Mixing With Various Gases in T-Type Micromixers
,”
Int. J. Heat Mass Transfer
,
156
, p.
119710
.10.1016/j.ijheatmasstransfer.2020.119710
27.
Han
,
J.-C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.10.5098/hmt.v1.1.3001
28.
Johnson
,
B. E.
, and
Hu
,
H.
, “
Measurement Uncertainties Analysis in the Determination of Adiabatic Film Cooling Effectiveness by Using Pressure Sensitive Paint (PSP) Technique
,” ASME Paper No. FEDSM2014-21230. 10.1115/FEDSM2014-21230
You do not currently have access to this content.