Abstract

For the design of modern gas turbine, cooling sources such as middle passage gap leakage flow, upstream slot leakage flow, and discrete film holes are designed to protect the blade. This research included middle passage gap leakage flow and two shapes of film holes (cylindrical holes and fan-shaped holes). First, experiment was carried out to verify the turbulence model at an inlet mainstream Reynolds number of 340,000, blowing ratio (M) of 1.0, and middle passage gap leakage mass flow ratio of 0.5%. Then, the circumferential positions of the endwall discrete film holes were optimized, and 100 samples were generated through Latin hypercube sampling (LHS) method, among which 80 samples were selected as the training data and 20 samples were selected as the verification set of radial basis function (RBF) neural network. Then particle swarm optimization (PSO) algorithm was adopted for the optimization. Finally, the flow structure, adiabatic film cooling effectiveness, and aerodynamic losses of four surrogate models were analyzed to achieve the most effective film hole arrangement on endwall. The results draw a conclusion that compared with the baseline and the best sample model, the area-averaged film cooling effectiveness of the endwall for most effective case increased by 188% and 9.6%, respectively. The area-averaged aerodynamic loss along the blade height at the endwall outlet decreased by 1.7% and 0.96%. Finally, the staggered arrangement of film holes shows the best film cooling performance.

References

1.
Hada
,
S.
, and
Thole
,
K. A.
,
2010
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
,
133
(
1
), p.
011024
.10.1115/1.4001135
2.
Yang
,
X.
,
Zhao
,
Q.
,
Liu
,
Z.
,
Liu
,
Z.
, and
Feng
,
Z.
,
2021
, “
Film Cooling Patterns Over an Aircraft Engine Turbine Endwall With Slot Leakage and Discrete Hole Injection
,”
Int. J. Heat Mass Tran
,.
165
, p.
120565
.10.1016/j.ijheatmasstransfer.2020.120565
3.
Zhang
,
K.
,
Li
,
J.
,
Li
,
Z. G.
, and
Song
,
L.
,
2019
, “
Effects of Simulated Swirl Purge Flow and Mid-Passage Gap Leakage on Turbine Blade Platform Cooling and Suction Surface Phantom Cooling Performance
,”
Int. J. Heat Mass Transfer
,
129
, pp.
618
634
.10.1016/j.ijheatmasstransfer.2018.09.111
4.
Zhang
,
K.
,
Li
,
Z. G.
, and
Li
,
J.
,
2021
, “
Turbine Endwall Cooling and Heat Transfer Characteristics Under Slashface Leakage Interacted With Nearby Discrete-Hole Injections
,”
Int. J. Therm Sci.
,
170
, p.
107167
.10.1016/j.ijthermalsci.2021.107167
5.
Li
,
Y.
,
Zhang
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
Experimental and Numerical Investigations of Shaped Hole Film Cooling With the Influence of Endwall Cross Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
42
55
.10.1016/j.ijheatmasstransfer.2017.11.150
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
4
), pp.
524
529
.10.1115/1.3450239
7.
Colban
,
W.
, and
Thole
,
K. A.
,
2007
, “
Influence of Hole Shape on the Performance of a Turbine Vane Endwall Film-Cooling Scheme
,”
Int. J. Heat Fluid
,
28
(
3
), pp.
341
356
.10.1016/j.ijheatfluidflow.2006.05.002
8.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2010
, “
Film Cooling of a Contoured Endwall Nozzle Vane Through Fan-Shaped Holes
,”
Int. J. Heat Fluid
,
31
(
4
), pp.
576
585
.10.1016/j.ijheatfluidflow.2010.04.001
9.
Yang
,
X.
,
Zhao
,
Q.
, and
Feng
,
Z. P.
,
2022
, “
Experimental Evaluation of Cooling Effectiveness From Novel Film Holes Over Turbine Endwalls With Inlet Swirl
,”
Int. J. Therm. Sci.
,
174
, p.
107434
.10.1016/j.ijthermalsci.2021.107434
10.
Yang
,
X.
,
Zhang
,
K.
,
Yao
,
J.
,
Wu
,
J.
,
Lei
,
J.
,
Su
,
P.
, and
Fang
,
Y.
,
2023
, “
Experimental and Numerical Investigations of Vane Endwall Film Cooling With Different Density Ratios
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
, p.
106778
.10.1016/j.icheatmasstransfer.2023.106778
11.
Zhang
,
C.
,
Wang
,
J.
,
Liu
,
X.
,
Song
,
L. M.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2020
, “
Experimental and Numerical Study on the Flat-Plate Film Cooling Enhancement Using the Vortex Generator Downstream for the Fan-Shaped Hole Configuration
,”
ASME J. Turbomach.
,
142
(
3
), p. 031006.10.1115/1.4046234
12.
Park
,
S.
,
Sohn
,
H.-S.
,
Shin
,
S.
,
Ueda
,
O.
,
Moon
,
H. K.
, and
Cho
,
H. H.
,
2021
, “
Film Cooling Characteristics on Blade Platform With a Leakage Flow Through Mid-Passage Gap
,”
Int. J. Heat Mass Transfer
,
167
, p.
120800
.10.1016/j.ijheatmasstransfer.2020.120800
13.
Zhang
,
J.
,
Liu
,
C.
,
Zhang
,
L.
,
Zhou
,
T.
,
Li
,
L.
, and
Guo
,
Y.
,
2022
, “
Experimental Study of Film Cooling Characteristics of Annular Cascade Endwall With a Partitioned Film Cooling Layout
,”
Int. J. Therm Sci.
,
182
, p.
107821
.10.1016/j.ijthermalsci.2022.107821
14.
Zhang
,
W. X.
,
Li
,
F.
,
Xie
,
Y. H.
,
Ding
,
Y. Q.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2023
, “
Experimental and Numerical Investigations of Discrete Film Holes Cooling Performance on a Blade Endwall With Mid-Passage Gap Leakage
,”
Int. J. Heat Mass Transfer
,
201
, p.
123550
.10.1016/j.ijheatmasstransfer.2022.123550
15.
Liu
,
J.
,
Du
,
W.
,
Zhang
,
G.
,
Hussain
,
S.
,
Wang
,
L.
,
Xie
,
G.
, and
Sundén
,
B.
,
2020
, “
Design of Full-Scale Endwall Film Cooling of a Turbine Vane
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
2
), p.
022201
.10.1115/1.4045069
16.
Wu
,
H.
,
Yang
,
X.
,
Wu
,
Y.
, and
Feng
,
Z. P.
,
2023
, “
Experimental Decoupled-Analysis of Overall Cooling Effectiveness for a Turbine Endwall With Internal and External Cooling Configurations
,”
Appl. Therm. Eng.
,
228
, p.
120435
.10.1016/j.applthermaleng.2023.120435
17.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
.10.1016/j.ijheatmasstransfer.2016.06.047
18.
Seo
,
H. J.
,
Kang
,
Y. J.
,
Lee
,
H. C.
,
Kwak
,
J. S.
,
Park
,
J. S.
, and
Lee
,
K. D.
,
2019
, “
Optimization of the Configuration of the Laidback Fan-Shaped Film Cooling Hole With a Lateral Expansion Angle of 10 Degrees
,”
Appl. Therm. Eng.
,
153
, pp.
379
389
.10.1016/j.applthermaleng.2019.03.029
19.
Wang
,
X.
,
Xu
,
H.
,
Wang
,
J.
,
Song
,
W.
, and
Wang
,
M.
,
2019
, “
Multi-Objective Optimization of Discrete Film Hole Arrangement on a High Pressure Turbine End-Wall With Conjugate Heat Transfer Simulations
,”
Int. J. Heat Fluid
,
78
, p.
108428
.10.1016/j.ijheatfluidflow.2019.108428
20.
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Multi-Fidelity Model Based Optimization of Shaped Film Cooling Hole and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
132
, pp.
118
129
.10.1016/j.ijheatmasstransfer.2018.11.156
21.
Tao
,
Z.
,
Guo
,
Z.
,
Yu
,
B.
,
Song
,
L. M.
, and
Li
,
J.
,
2021
, “
Aero-Thermal Optimization of a Gas Turbine Blade Endwall With Non-Axisymmetric Contouring and Purge Flow
,”
Int. J. Heat Mass Transfer
,
178
, p.
121626
.10.1016/j.ijheatmasstransfer.2021.121626
22.
Yuan
,
H.
,
Wu
,
Y.
,
Zhou
,
S.
,
Wang
,
M.
,
Lu
,
X.
, and
Zhang
,
Y.
,
2023
, “
Nonuniform Height Endwall Fence Optimization of a Low-Pressure Turbine Cascade
,”
Int. J. Mech. Sci.
,
250
, p.
108301
.10.1016/j.ijmecsci.2023.108301
23.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.