Abstract

The thermal transport to drops that roll or slide down heated superhydrophobic surfaces is explored. High-speed infrared imaging is performed to provide time-resolved measurement of the heat transfer to the drop. Data are obtained for drops moving along smooth hydrophobic and structured superhydrophobic surfaces. Both post and rib style structures with surface solid fractions ranging from 0.06 to 1.0 are considered. The inclination angle of the surfaces was varied from 10 deg to 25 deg, and the drop volume was varied from 12 to 40 μL. The measurements reveal that the drop speed is a strong function of both the inclination angle and the surface solid fraction. Further, the heat transfer is strongly affected by the surface solid fraction and the drop speed. Surfaces with low solid fraction result in a decrease in the initial heat transfer compared to the behavior observed for drops on a smooth surface. At the smallest solid fractions explored the reduction in heat transfer is nearly 80%. For rib structured surfaces, drop motion both along and perpendicular to the rib direction was considered and the heat transfer is larger for drops moving in the parallel rib configuration. This variation is likely caused by the increased rolling speed that prevails for the parallel rib case. Over 130 unique conditions were explored, and the results from all cases were used to develop correlations that enable prediction of the heat transfer to drops rolling or sliding down smooth hydrophobic and superhydrophobic surfaces.

References

1.
Blossey
,
R.
, May
2003
, “
Self-Cleaning surfaces - Virtual Realities
,”
Nat. Mater.
,
2
(
5
), pp.
301
306
.10.1038/nmat856
2.
Boreyko
,
J. B.
, and
Chen
,
C. H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
103
(
18
), p. 184501.10.1103/PhysRevLett.103.184501
3.
Wang
,
X.
,
Xu
,
B.
,
Liu
,
Q.
,
Yang
,
Y.
, and
Chen
,
Z.
,
2021
, “
Enhancement of Vapor Condensation Heat Transfer on the Micro- and Nano-Structured Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
177
, p.
121526
.10.1016/j.ijheatmasstransfer.2021.121526
4.
Chen
,
W.
,
Fadeev
,
A. Y.
,
Hsieh
,
M. C.
,
Öner
,
D.
,
Youngblood
,
J.
, and
McCarthy
,
T. J.
,
1999
, “
Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples
,”
Langmuir
,
15
(
10
), pp.
3395
3399
.10.1021/la990074s
5.
Humayun
,
S.
,
Maynes
,
R. D.
,
Crockett
,
J.
, and
Iverson
,
B. D.
,
2022
, “
Retention Forces for Drops on Microstructured Superhydrophobic Surfaces
,”
Langmuir
,
38
(
51
), pp.
15960
15972
.10.1021/acs.langmuir.2c02290
6.
Xie
,
J.
,
Xu
,
J.
,
Shang
,
W.
, and
Zhang
,
K.
,
2018
, “
Mode Selection Between Sliding and Rolling for Droplet on Inclined Surface: Effect of Surface Wettability
,”
Int. J. Heat Mass Transfer
,
122
, pp.
45
58
.10.1016/j.ijheatmasstransfer.2018.01.098
7.
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Ali
,
H.
, and
Al-Aqeeli
,
N.
,
2017
, “
Dynamics of a Water Droplet on a Hydrophobic Inclined Surface: Influence of Droplet Size and Surface Inclination Angle on Droplet Rolling
,”
RSC Adv.
,
7
(
77
), pp.
48806
48818
.10.1039/C7RA09345D
8.
Yilbas
,
B. S.
,
Ali
,
H.
,
Al-Sharafi
,
A.
, and
Al-Aqeeli
,
N.
,
2018
, “
Droplet Dynamics on a Hydrophobic Surface Coated With N-Octadecane Phase Change Material
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
546
, pp.
28
39
.10.1016/j.colsurfa.2018.02.073
9.
Maynes
,
D.
, and
Crockett
,
J.
,
2014
, “
Apparent Temperature Jump and Thermal Transport in Channels With Streamwise Rib and Cavity Featured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
1
), p. 011701.10.1115/1.4025045
10.
Cowley
,
A.
,
Maynes
,
D.
, and
Crockett
,
J.
,
2016
, “
Inertial Effects on Thermal Transport in Superhydrophobic Microchannels
,”
Int. J. Heat Mass Transfer
,
101
, pp.
121
132
.10.1016/j.ijheatmasstransfer.2016.05.037
11.
Mahadevan
,
L.
, and
Pomeau
,
Y.
,
1999
, “
Rolling Droplets
,”
Phys. Fluids
,
11
(
9
), pp.
2449
2453
.10.1063/1.870107
12.
Yang
,
J. T.
,
Yang
,
Z. H.
,
Chen
,
C. Y.
, and
Yao
,
D. J.
,
2008
, “
Conversion of Surface Energy and Manipulation of a Single Droplet Across Micropatterned Surfaces
,”
Langmuir
,
24
(
17
), pp.
9889
9897
.10.1021/la8004695
13.
Backholm
,
M.
,
Molpeceres
,
D.
,
Vuckovac
,
M.
,
Nurmi
,
H.
,
Hokkanen
,
M. J.
,
Jokinen
,
V.
,
Timonen
,
J. V. I.
, and
Ras
,
R. A. H.
,
2020
, “
Water Droplet Friction and Rolling Dynamics on Superhydrophobic Surfaces
,”
Commun. Mater.
,
1
(
1
), p. 64.10.1038/s43246-020-00065-3
14.
Sakai
,
M.
,
Song
,
J. H.
,
Yoshida
,
N.
,
Suzuki
,
S.
,
Kameshima
,
Y.
, and
Nakajima
,
A.
, 11 May
2006
, “
Direct Observation of Internal Fluidity in a Water Droplet During Sliding on Hydrophobic Surfaces
,”
Langmuir
,
22
(
11
), pp.
4906
4909
.10.1021/la060323u
15.
Sakai
,
M.
,
Kono
,
H.
,
Nakajima
,
A.
,
Zhang
,
X.
,
Sakai
,
H.
,
Abe
,
M.
, and
Fujishima
,
A.
,
2009
, “
Sliding of Water Droplets on the Superhydrophobic Surface With Zno Nanorods
,”
Langmuir
,
25
(
24
), pp.
14182
14186
.10.1021/la901461k
16.
Hays
,
R.
,
Maynes
,
D.
, and
Crockett
,
J.
,
2016
, “
Thermal Transport to Droplets on Heated Superhydrophobic Substrates
,”
Int. J. Heat Mass Transfer
,
98
, pp.
70
80
.10.1016/j.ijheatmasstransfer.2016.03.011
17.
Phadnis
,
A.
, and
Rykaczewski
,
K.
,
2017
, “
The Effect of Marangoni Convection on Heat Transfer During Dropwise Condensation on Hydrophobic and Omniphobic Surfaces
,”
Int. J. Heat Mass Transfer
,
115
, pp.
148
158
.10.1016/j.ijheatmasstransfer.2017.08.026
18.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G. H.
, and
Hosoi
,
A. E.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.10.1017/S0022112008005053
19.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Ali
,
H.
, and
Alaqeeli
,
N.
,
2018
, “
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface
,”
Sci. Rep.
,
8
(
1
), p. 3061.10.1038/s41598-018-21511-w
20.
Guo
,
C.
,
Maynes
,
D.
,
Crockett
,
J.
, and
Zhao
,
D.
,
2019
, “
Heat Transfer to Bouncing Droplets on Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
137
, pp.
857
867
.10.1016/j.ijheatmasstransfer.2019.03.103
21.
Pasandideh-Fard
,
M.
,
Aziz
,
S. D.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2001
, “
Cooling Effectiveness of a Water Drop Impinging on a Hot Surface
,”
Int. J. Heat Fluid Flow
,
22
(
2
), pp.
201
210
.10.1016/S0142-727X(00)00086-2
22.
Maynes
,
D.
,
Webb
,
B. W.
,
Crockett
,
J.
, and
Solovjov
,
V.
,
2013
, “
Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Mass Trans. Transfer ASME
,
135
(
2
), p. 021701.10.1115/1.4007429
23.
Cheng
,
T.-Y.
, and
Deng
,
D.
,
2012
, “
Curvature Effect Quantification for in-Vivo ir Thermography
,” ASME Paper No. IMECE2012-88105.10.1115/IMECE2012-88105
24.
Reyssat
,
M.
,
Richard
,
D.
,
Clanet
,
C.
, and
Quere
,
D.
,
2010
, “
Dynamical Superhydrophobicity
,”
Faraday Discuss.
,
146
, pp.
19
33
.10.1039/c000410n
You do not currently have access to this content.