Abstract

Neumann's solution has been perceived to be inapplicable for the Stefan problem when Rayleigh–Bénard (R–B) convection exists. Yet, this article challenges this perception by demonstrating the applicability of Neumann's solution in the context of R–B convection. The temporal, countergravitational progression of a liquid–solid interface is distinctively attributed by R–B convection, sequentially transforming from diffusive to convective state as the melt phase thickens. We thus incorporate a lumped parameter, “convective conductivity” that accounts for the distinctive temporal thickening of the melt phase and replaces “stagnant thermal conductivity” in Neumann's solution. Thus, the extended Neumann's solution that includes R–B convection, enables the temporal progression of the liquid–solid interface to be precisely determined for quasi-steady phase transition.

References

1.
Woods
,
J.
,
Mahvi
,
A.
,
Goyal
,
A.
,
Kozubal
,
E.
,
Odukomaiya
,
A.
, and
Jackson
,
R.
,
2021
, “
Rate Capability and Ragone Plots for Phase Change Thermal Energy Storage
,”
Nat. Energy
,
6
(
3
), pp.
295
302
.10.1038/s41560-021-00778-w
2.
Stefan
,
J.
,
1891
, “
Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung im Polarmeere
,”
Ann. Phys.
,
278
(
2
), pp.
269
286
.10.1002/andp.18912780206
3.
Gau
,
C.
, and
Viskanta
,
R.
,
1984
, “
Melting and Solidification of a Metal System in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
113
123
.10.1016/0017-9310(84)90243-6
4.
Madruga
,
S.
,
Haruki
,
N.
, and
Horibe
,
A.
,
2018
, “
Experimental and Numerical Study of Melting of the Phase Change Material Tetracosane
,”
Int. Commun. Heat Mass Transfer
,
98
, pp.
163
170
.10.1016/j.icheatmasstransfer.2018.08.021
5.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
New York
, Chap. 6.
6.
Favier
,
B.
,
Purseed
,
J.
, and
Duchemin
,
L.
,
2019
, “
Rayleigh–Bénard Convection With a Melting Boundary
,”
J. Fluid Mech.
,
858
, pp.
437
473
.10.1017/jfm.2018.773
7.
Boger
,
D. V.
, and
Westwater
,
J. W.
,
1967
, “
Effect of Buoyancy on the Melting and Freezing Process
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
89
(
1
), pp.
81
89
.10.1115/1.3614327
8.
Yen
,
Y. C.
,
1968
, “
Onset of Convection in a Layer of Water Formed by Melting Ice From Below
,”
Phys. Fluids
,
11
(
6
), pp.
1263
1270
.10.1063/1.1692096
9.
Hale
,
N. W.
, Jr.
, and
Viskanta
,
R.
,
1980
, “
Solid-Liquid Phase-Change Heat Transfer and Interface Motion in Materials Cooled or Heated From Above or Below
,”
Int. J. Heat Mass Transfer
,
23
(
3
), pp.
283
292
.10.1016/0017-9310(80)90116-7
10.
Gau
,
C.
, and
Viskanta
,
R.
,
1985
, “
Effect of Natural Convection on Solidification From Above and Melting From Below of a Pure Metal
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
573
587
.10.1016/0017-9310(85)90180-2
11.
Gong
,
Z. X.
, and
Mujumdar
,
A. S.
,
1998
, “
Flow and Heat Transfer in Convection-Dominated Melting in a Rectangular Cavity Heated From Below
,”
Int. J. Heat Mass Transfer
,
41
(
17
), pp.
2573
2580
.10.1016/S0017-9310(97)00374-8
12.
Kousksou
,
T.
,
Arid
,
A.
,
Majid
,
J.
, and
Zeraouli
,
Y.
,
2010
, “
Numerical Modeling of Double-Diffusive Convection in Ice Slurry Storage Tank
,”
Int. J. Refrig.
,
33
(
8
), pp.
1550
1558
.10.1016/j.ijrefrig.2010.05.003
13.
Madruga
,
S.
, and
Curbelo
,
J.
,
2018
, “
Dynamic of Plumes and Scaling During the Melting of a Phase Change Material Heated From Below
,”
Int. J. Heat Mass Transfer
,
126
, pp.
206
220
.10.1016/j.ijheatmasstransfer.2018.05.075
14.
Duan
,
J.
,
Xiong
,
Y.
, and
Yang
,
D.
,
2019
, “
On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures
,”
Energies
,
12
(
16
), p.
3100
.10.3390/en12163100
15.
Guo
,
W.
,
Zhao
,
R.
,
Liu
,
Y.
, and
Huang
,
D.
,
2021
, “
Semi-Theoretical Correlations of Melting Process Driven by Rayleigh–Bénard Convection Suitable for Low Melting Point Metal
,”
Case Stud. Therm. Eng.
,
28
, p.
101511
.10.1016/j.csite.2021.101511
16.
Farid
,
M. M.
, and
Mohamed
,
A. K.
,
1987
, “
Effect of Natural Convection on the Process of Melting and Solidification of Paraffin Wax
,”
Chem. Eng. Commun.
,
57
(
1–6
), pp.
297
316
.10.1080/00986448708960492
17.
Du
,
X. Z.
,
Yang
,
Z. G.
,
Jin
,
Z. Y.
,
Xia
,
C.
, and
Bao
,
D.
,
2018
, “
A Comparative Study of Passive Control on Flow Structure Evolution and Convective Heat Transfer Enhancement for Impinging Jet
,”
Int. J. Heat Mass Transfer
,
126
, pp.
256
280
.10.1016/j.ijheatmasstransfer.2018.01.061
18.
Koşan
,
M.
, and
Şahin
,
H. M.
,
2017
, “
Numerical Analysis of a Heat Exchanger in a Thermal Energy Storage System
,”
Proceedings of the 23rd International Conference on Engineering, Technology and Innovation
, Madeira, Portugal, June 27–29, pp.
1
9
.
19.
Hussein
,
H. A.
,
Abed
,
A. H.
, and
Abdulmunem
,
A. R.
,
2016
, “
An Experimental Investigation of Using Aluminum Foam Matrix Integrated With Paraffin Wax as a Thermal Storage Material in a Solar Heater
,”
Proceeding of the 2nd Sustainable and Renewable Energy Conference
,
Baghdad, Iraq
, Nov. 26–27, Paper No. ASE-6.
20.
Buonomo
,
B.
,
Ercole
,
D.
,
Manca
,
O.
, and
Nardini
,
S.
,
2017
, “
Numerical Investigation on Thermal Behaviors of Two-Dimensional Latent Thermal Energy Storage With PCM and Aluminum Foam
,”
J. Phys.: Conf. Ser.
,
796
, p.
012031
.10.1088/1742-6596/796/1/012031
21.
Shi
,
X.
,
Bin
,
Y.
,
Hou
,
D.
,
Men
,
Y.
, and
Matsuo
,
M.
,
2014
, “
Gelation/Crystallization Mechanisms of UHMWPE Solutions and Structures of Ultradrawn Gel Films
,”
Polym. J.
,
46
(
1
), pp.
21
35
.10.1038/pj.2013.66
22.
Tse
,
C. C. W.
,
Ng
,
S. S.
,
Stringer
,
J.
,
MacNeil
,
S.
,
Haycock
,
J. W.
, and
Smith
,
P. J.
,
2016
, “
Utilising Inkjet Printed Paraffin Wax for Cell Patterning Applications
,”
Int. J. Bioprint.
,
2
, pp.
35
44
.10.18063/IJB.2016.01.001
23.
Alade
,
O. S.
,
Hassan
,
A.
,
Mahmoud
,
M.
,
Al-Shehri
,
D.
, and
Al-Majed
,
A.
,
2020
, “
Novel Approach for Improving the Flow of Waxy Crude Oil Using Thermochemical Fluids: Experimental and Simulation Study
,”
ACS Omega
,
5
(
8
), pp.
4313
4321
.10.1021/acsomega.9b04268
24.
Mohanty
,
S.
, and
Arora
,
R.
,
2020
, “
CFD Analysis of a Shell and Tube Heat Exchanger With Single Segmental Baffles
,”
Int. J. Automot. Mech. Eng.
,
17
(
2
), pp.
7890
7901
.10.15282/ijame.17.2.2020.08.0589
25.
Bucio
,
A.
,
Moreno-Tovar
,
R.
,
Bucio
,
L.
,
Espinosa-Dávila
,
J.
, and
Anguebes-Franceschi
,
F.
,
2021
, “
Characterization of Beeswax, Candelilla Wax and Paraffin Wax for Coating Cheeses
,”
Coatings
,
11
(
3
), p.
261
.10.3390/coatings11030261
26.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, Chap.
2
.
27.
Mukutmoni
,
D.
, and
Yang
,
K. T.
,
1993
, “
Rayleigh-Bénard Convection in a Small Aspect Ratio Enclosure: Part I—Bifurcation to Oscillatory Convection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
2
), pp.
360
366
.10.1115/1.2910687
28.
Farhadieh
,
R.
, and
Tankin
,
R.
,
1974
, “
Interferometric Study of Two-Dimensional Bénard Convection Cells
,”
J. Fluid Mech.
,
66
(
4
), pp.
739
752
.10.1017/S0022112074000486
29.
Wu
,
Y.
, and
Lacroix
,
M.
,
1992
, “
Numerical Study of a Pure Metal Melting in Presence of Turbulent Natural Convection
,”
Int. J. Numer. Methods Heat Fluid Flow
,
2
(
3
), pp.
235
242
.10.1108/eb017492
30.
Esfahani
,
B. R.
,
Hirata
,
S. C.
,
Berti
,
S.
, and
Calzavarini
,
E.
,
2018
, “
Basal Melting Driven by Turbulent Thermal Convection
,”
Phys. Rev. Fluids
,
3
(
5
), p.
053501
.10.1103/PhysRevFluids.3.053501
31.
Purseed
,
J.
,
Favier
,
B.
,
Duchemin
,
L.
, and
Hester
,
E. W.
,
2020
, “
Bistability in Rayleigh-Bénard Convection With a Melting Boundary
,”
Phys. Rev. Fluids
,
5
(
2
), p.
023501
.10.1103/PhysRevFluids.5.023501
32.
Satbhai
,
O.
, and
Roy
,
S.
,
2020
, “
Criteria for the Onset of Convection in the Phase-Change Rayleigh–Bénard System With Moving Melting-Boundary
,”
Phys. Fluids
,
32
(
6
), p.
064107
.10.1063/5.0004979
33.
Prusa
,
J.
, and
Yao
,
L. S.
,
1985
, “
Effects of Density Change and Subcooling on the Melting of a Solid Around a Horizontal Heated Cylinder
,”
J. Fluid Mech.
,
155
, pp.
193
212
.10.1017/S002211208500177X
34.
Niemela
,
J. J.
,
Skrbek
,
L.
,
Sreenivasan
,
K. R.
, and
Donnelly
,
R. J.
,
2000
, “
Turbulent Convection at Very High Rayleigh Numbers
,”
Nature
,
404
(
6780
), pp.
837
840
.10.1038/35009036
35.
Moon
,
J. Y.
, and
Chung
,
B. J.
,
2019
, “
Influence of Prandtl Number, Height and Lateral Cooling Condition on Laminar Natural Convection in a Rectangular Enclosure
,”
Heat Mass Transfer
,
55
(
6
), pp.
1593
1605
.10.1007/s00231-018-02540-7
36.
OriginLab
,
2023
, “
Help Online - Origin Help—Nelder
,”
OriginLab Corporation
,
Northampton, MA
, accessed May 24, 2023, https://www.originlab.com/doc/en/Origin-Help/Nelder-FitFunc
You do not currently have access to this content.