Abstract

This study experimentally investigated the hydrothermal and overall performance of the microchannel heat sink incorporating the jet impingement technique. Later on, a numerical model is developed using the finite volume-based tool fluent of the commercial software ansys and validated with the experimental results. Improvement in the cooling performance for the fluid impinging normal to the surface is observed in comparison to the parallel flow of fluid in the microchannel. Similarly, variation in the jet impingement microchannel heat sink performance for the single-jet and multijet is also explored. Hydraulic and thermal characteristic parameters such as pressure drop, average heat transfer coefficient, maximum wall temperature, and figure of merit are evaluated for the analysis. Multijet impingement flow exhibited superior heat transfer with respect to the parallel flow and single impingement flow but offered remarkably higher pressure drop. However, the Figure of Merit value is superior for the multijet impingement flow technique with 5 number of jet nozzles. In addition, increasing as well as decreasing the number of jets from 5 jet nozzles for the same mass flowrate diminishes the overall performance of the jet impingement microchannel heat sink.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Pandey
,
J.
,
Husain
,
A.
, and
Ansari
,
M. Z.
,
2022
, “
Artificial Neural Network and Numerical Analysis for Performance Enhancement of Hybrid Microchannel-Pillar-Jet Impingement Heat Sink Using Al2O3-Water and CuO-Water Nanofluids
,”
Proc. IMechE Part C: J Mech. Eng. Sci.
,
236
(
17
), pp.
9814
9827
.10.1177/09544062221095368
3.
Lodhi
,
M. S.
,
Sheorey
,
T.
, and
Dutta
,
G.
,
2020
, “
Single-Phase Fluid Flow and Heat Transfer Characteristics of Nanofluid in a Circular Microchannel: Development of Flow and Heat Transfer Correlations
,”
Proc. IMechE Part C: J Mech. Eng. Sci.
,
234
(
18
), pp.
1
20
.10.1177/0954406220916537
4.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Multiobjective Optimisation of a Microchannel Heat Sink Using Evolutionary Algorithm
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
11
), p.
114505
.10.1115/1.2969261
5.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2018
, “
A New Approach for the Mitigating of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
7
), p.
072401
.10.1115/1.4038830
6.
Sidik
,
N. A. C.
,
Muhamad
,
M. N. A. W.
,
Japar
,
W. M. A. A.
, and
Rasid
,
Z. A.
,
2017
, “
An Overview of Passive Techniques for Heat Transfer Augmentation in Microchannel Heat Sink
,”
Int. Comm. Heat Mass Transfer
,
88
, pp.
74
83
.10.1016/j.icheatmasstransfer.2017.08.009
7.
Krishan
,
G.
,
Aw
,
K. C.
, and
Sharma
,
R. N.
,
2019
, “
Synthetic Jet Impingement Heat Transfer Enhancement – A Review
,”
Appl. Therm. Eng.
,
149
, pp.
1305
1323
.10.1016/j.applthermaleng.2018.12.134
8.
Sun
,
L.
,
Li
,
J.
,
Xu
,
H.
,
Ma
,
J.
, and
Peng
,
H.
,
2022
, “
Numerical Study on Heat Transfer and Flow Characteristics of Novel Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
176
, p.
107535
.10.1016/j.ijthermalsci.2022.107535
9.
Maheswari
,
A.
, and
Prajapati
,
Y. K.
,
2023
, “
Thermal Performance Enhancement and Optimisation of Double-Layer Microchannel Heat Sink With Intermediate Perforated Rectangular Fins
,”
Int. J. Therm. Sci.
,
185
, p.
108043
.10.1016/j.ijthermalsci.2022.108043
10.
Pandey
,
J.
,
Ansari
,
M. Z.
, and
Husain
,
A.
,
2023
, “
Performance Enhancement Using Porous Slabs in a Jet Impingement Microchannel Heat Sink
,”
Heat Transf. Eng.
,
44
(
20
), pp.
1903
1925
.10.1080/01457632.2022.2162008
11.
Wei
,
X.
,
Joshi
,
Y.
, and
Patterson
,
M. K.
,
2007
, “
Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
10
), pp.
1432
1444
.10.1115/1.2754781
12.
Escher
,
W.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid Cooled Chips
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
8
), p.
081402
.10.1115/1.4001306
13.
Yang
,
D.
,
Wang
,
Y.
,
Ding
,
G.
,
Jin
,
Z.
,
Zhao
,
J.
, and
Wang
,
G.
,
2017
, “
Numerical and Experimental Analysis of Cooling Performance of Single-Phase Array Microchannel Heat Sinks With Different Pin-Fin Configurations
,”
Appl. Therm. Eng.
,
112
, pp.
1547
1556
.10.1016/j.applthermaleng.2016.08.211
14.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.10.1016/j.applthermaleng.2013.10.042
15.
Ahmed
,
H. E.
, and
Ahmed
,
M. I.
,
2015
, “
Optimum Thermal Design of Triangular, Trapezoidal and Rectangular Grooved Microchannel Heat Sinks
,”
Int. Comm. H. Mass Transfer
,
66
, pp.
47
57
.10.1016/j.icheatmasstransfer.2015.05.009
16.
Al-Asadi
,
M. T.
,
Al-Damook
,
A.
, and
Wilson
,
M. C. T.
,
2018
, “
Assessment of Vortex Generator Shapes and Pin Fin Perforations for Enhancing Water-Based Heat Sink Performance
,”
Int. Comm. Heat Mass Transfer
,
91
, pp.
1
10
.10.1016/j.icheatmasstransfer.2017.11.002
17.
Li
,
Y. F.
,
Xia
,
G. D.
,
Ma
,
D. D.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Triangular Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
98
, pp.
17
28
.10.1016/j.ijheatmasstransfer.2016.03.022
18.
Du
,
X.
,
Yang
,
Z.
,
Jin
,
Z.
,
Xia
,
C.
, and
Bao
,
D.
,
2018
, “
A Comparative Study of Passive Control on Flow Structure Evolution and Convective Heat Transfer Enhancement for Impinging Jet
,”
Int. J. Heat Mass Transfer
,
126
(
Part A
), pp.
256
280
.10.1016/j.ijheatmasstransfer.2018.01.061
19.
Du
,
X.
,
Yang
,
Z.
,
Zhou
,
H.
, and
Li
,
Q.
,
2016
, “
Numerical Investigation of Geometry Effects on Flow, Heat Transfer and Defrosting Characteristics of a Simplified Automobile Windshield With a Single Row of Impinging Jets
,”
SAE
Paper No. 2016-01-0208.10.4271/2016-01-0208
20.
Zhang
,
Y.
,
Wang
,
S.
, and
Ding
,
P.
,
2017
, “
Effects of Channel Shape on the Cooling Performance of Hybrid Micro Channel and Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
113
, pp.
295
309
.10.1016/j.ijheatmasstransfer.2017.05.092
21.
Wang
,
E. N.
,
Zhang
,
L.
,
Jiang
,
L.
,
Koo
,
J.-M.
,
Maveety
,
J. G.
,
Sanchez
,
E. A.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, October
2004
, “
Micromachined Jets for Liquid Impingement Cooling of VLSI Chips
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
833
842
.10.1109/JMEMS.2004.835768
22.
Tran
,
N.
,
Chang
,
Y.-J.
,
Teng
,
J.-T.
,
Dang
,
T.
, and
Greif
,
R.
,
2016
, “
Enhancement Thermodynamic Performance of Microchannel Heat Sink by Using a Novel Multi-Nozzle Structure
,”
Int. J. Heat Mass Transfer
,
101
, pp.
656
666
.10.1016/j.ijheatmasstransfer.2016.04.111
23.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2008
, “
Effects of Jet Pattern on Single-Phase Cooling Performance of Hybrid Micro-Channel/Micro-Circular-Jet-Impingement Thermal Management Scheme
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4614
4627
.10.1016/j.ijheatmasstransfer.2008.02.021
24.
Pandey
,
J.
,
Ansari
,
M. Z.
, and
Husain
,
A.
,
2021
, “
Optimisation of Porous Slab Parameters for Jet-Impingement Microchannel Heat Sink Performance Enhancement
,”
Int. J. Num. Methods Heat Fluid Flow
,
32
(
8
), pp.
2659
2681
.10.1108/HFF-08-2021-0523
25.
Naphon
,
P.
,
Nakharintr
,
L.
, and
Wiriyasart
,
S.
,
2018
, “
Continuous Nanofluids Jet Impingement Heat Transfer and Flow in a Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
126
(Part A), pp.
924
932
.10.1016/j.ijheatmasstransfer.2018.05.101
26.
Husain
,
A.
, and
Ariz
,
M.
,
2017
, “
Thermal Performance of Jet Impingement With Spent Flow Management
,”
Int. J. Eng.
,
30
(
10
), pp.
1599
1608
.10.5829/ije.2017.30.10a.22
27.
Robinson
,
A. J.
,
Kempers
,
R.
,
Colenbrander
,
J.
,
Bushnell
,
N.
, and
Chen
,
R.
,
2018
, “
A Single Phase Hybrid Micro Heat Sink Using Impinging Micro-Jet Arrays and Microchannels
,”
Appl. Therm. Eng.
,
136
, pp.
408
418
.10.1016/j.applthermaleng.2018.02.058
28.
Wiriyasart
,
S.
, and
Naphon
,
P.
,
2019
, “
Liquid Impingement Cooling of Cold Plate Heat Sink With Different Fin Configurations: High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
140
, pp.
281
292
.10.1016/j.ijheatmasstransfer.2019.06.020
29.
Husain
,
A.
,
Ariz
,
M.
,
Al-Rawahi
,
N. Z. H.
, and
Ansari
,
M. Z.
,
2016
, “
Thermal Performance Analysis of a Hybrid Micro-Channel, -Pillar and -Jet Impingement Heat Sink
,”
Appl. Therm. Eng.
,
102
, pp.
989
1000
.10.1016/j.applthermaleng.2016.03.048
30.
Huang
,
X.
,
Yang
,
W.
,
Ming
,
T.
,
Shen
,
W.
, and
Yu
,
X.
,
2017
, “
Heat Transfer Enhancement on a Microchannel Heat Sink With Impinging Jets and Dimples
,”
Int. J. Heat Mass Transfer
,
112
, pp.
113
124
.10.1016/j.ijheatmasstransfer.2017.04.078
31.
Pandey
,
J.
,
Ansari
,
M. Z.
, and
Husain
,
A.
,
2021
, “
Performance Analysis of Hybrid Microchannel Heat Sink for Varying Nozzle Geometry and Layout on the Basis of First and Second-Law of Thermodynamics
,”
J. Mech. Sci. Tech.
,
35
(
12
), pp.
5753
5764
.10.1007/s12206-021-1144-5
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
33.
Andraos
,
J.
,
1996
, “
On the Propagation of Statistical Errors for a Function of Several Variables
,”
J. Chem. Educ.
,
73
(
2
), pp.
150
154
.10.1021/ed073p150
34.
Du
,
X.
,
Wei
,
A.
,
Fang
,
Y.
,
Yang
,
Z.
,
Wei
,
D.
,
Lin
,
C.-H.
, and
Jin
,
Z.
,
2020
, “
The Effect of Bend Angle on Pressure Drop and Flow Behaviour in a Corrugated Duct
,”
Acta Mech.
,
231
(
9
), pp.
3755
3777
.10.1007/s00707-020-02716-5
35.
ANSYS Fluent
,
2017
, Version 18.0, January, Canonsburg, PA, U.S.
36.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Different Configuration Designs
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.10.1016/j.ijheatmasstransfer.2013.07.019
37.
Karwa
,
R.
,
Sharma
,
C.
, and
Karwa
,
N.
,
2013
, “
Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces
,”
J. Sol. Energy
, pp.
1
9
.10.1155/2013/370823
38.
Ehrenpreis
,
C.
,
El Bahi
,
H.
,
Xu
,
H.
,
Roux
,
G.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2020
, “
Physically-Motivated Figure of Merit (FOM) Assessing the Cooling Performance of Fluids Suitable for the Direct Cooling of Electrical Components
,” 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, July 21–23, pp.
422
429
.10.1109/ITherm45881.2020.9190343
39.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
40.
Gurrum
,
S. P.
,
Suman
,
S. K.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2004
, “
Thermal Issues in Next-Generation Integrated Circuits
,”
IEEE Trans. Device Mat. Reliab.
,
4
(
4
), pp.
709
714
.10.1109/TDMR.2004.840160
41.
Chein
,
R.
, and
Huang
,
G.
,
2004
, “
Thermoelectric Cooler Application in Electronic Cooling
,”
Appl. Therm. Eng.
,
24
(
14–15
), pp.
2207
2217
.10.1016/j.applthermaleng.2004.03.001
You do not currently have access to this content.