Abstract

Thermal spreading and constriction have been widely studied due to relevance in heat transfer across interfaces with imperfect contact and problems such as microelectronics thermal management. Much of the past work in this field addresses an isoflux source, with relatively lesser work on the isothermal source problem, which is of much relevance to heat transfer across rough interfaces. This work presents an analytical solution for thermal spreading/constriction resistance that governs heat flow from an isothermal source into a multilayer orthotropic semi-infinite flux tube. The mixed boundary condition due to the isothermal source is accounted for by writing a convective boundary condition with an appropriately chosen spatially-varying Biot number. A series solution for the temperature field is derived, along with a set of linear algebraic equations for the series coefficients. An expression for the nondimensional thermal spreading resistance is derived for Cartesian and cylindrical problems. It is shown that, depending on the values of various nondimensional parameters, heat transfer in either the thin film or the flux tube may dominate and govern the overall thermal spreading resistance. Results for a single-layered isotropic flux tube are derived as a special case of the general result, for which, good agreement with past work is demonstrated. An easy-to-use polynomial fit for this special case is presented. This work contributes a novel technique for solving mixed boundary problems involving an isothermal source, and may also help solve practical problems related to interfacial heat transfre and thermal management.

References

1.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2023
,
Thermal Spreading and Contact Resistance: Fundamentals and Applications
, 1st ed.,
Wiley
, Hoboken, NJ.
2.
Yovanovich
,
M. M.
, and
Marotta
,
E. E.
,
2003
, “
Thermal Spreading and Contact Resistances
,”
Heat Transfer Handbook
,
A.
Bejan
and
A.
Kraus
, eds.,
Wiley, Hoboken, NJ.
3.
Madhusudana
,
C. V.
,
2014
,
Thermal Contact Conductance
, 2nd ed.,
Springer
, Berlin, Germany.
4.
Razavi
,
M.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2016
, “
Review of Advances in Thermal Spreading Resistance Problems
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
4
), pp.
863
879
.10.2514/1.T4801
5.
Lee
,
S.
,
Song
,
S.
,
Au
,
V.
, and
Moran
,
K. P.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
Proc. ASME/JSME Therm. Eng. Conf.
,
4
, pp.
199
206
.https://file.elecfans.com/web1/M00/20/C0/ooYBAFmk1LSAMH2xAAOv1ilC3UE457.pdf
6.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Prasher
,
R.
,
2002
, “
Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
621
628
.10.1109/TCAPT.2002.807994
7.
Hua
,
Y.-C.
,
Li
,
H.-L.
, and
Cao
,
B.-Y.
,
2019
, “
Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs
,”
IEEE Trans. Electron Devices
,
66
(
8
), pp.
3296
3301
.10.1109/TED.2019.2922221
8.
Jacobs
,
G.
, and
Todreas
,
N.
,
1973
, “
Thermal Contact Conductance in Reactor Fuel Elements
,”
Nucl. Sci. Eng.
,
50
(
3
), pp.
283
290
.10.13182/NSE73-A28981
9.
Ong
,
K. S.
,
Tan
,
C. F.
,
Lai
,
K. C.
, and
Tan
,
K. H.
,
2017
, “
Heat Spreading and Heat Transfer Coefficient With Fin Heat Sink
,”
Appl. Therm. Eng.
,
112
, pp.
1638
1647
.10.1016/j.applthermaleng.2016.09.161
10.
Zhang
,
L.
,
Li
,
E.-P.
,
Yu
,
X.-P.
, and
Hao
,
R.
,
2017
, “
Modeling and Optimization of Substrate Electromagnetic Coupling and Isolation in Modern Lightly Doped CMOS Substrate
,”
IEEE Trans. Electromagn. Compat.
,
59
(
2
), pp.
662
669
.10.1109/TEMC.2016.2629702
11.
Sneddon
,
I.
,
1966
,
Mixed Boundary Value Problems in Potential Theory
,
North-Holland Publishing Company
, Amsterdam, The Netherlands.
12.
Yovanovich
,
M. M.
,
Tien
,
C. L.
, and
Schneider
,
G. E.
,
1980
, “
General Solution of Constriction Resistance Within a Compound Disk
,”
Heat Transfer, Thermal Control, and Heat Pipes
,
AIAA
,
New York
, Vol.
70
, pp.
47
62
.10.2514/6.1979-178
13.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Oxford, UK
.
14.
Muzychka
,
Y. S.
,
Sridhar
,
M. R.
,
Yovanovich
,
M. M.
, and
Antonetti
,
V. W.
,
1996
, “
Thermal Spreading Resistance in Multilayered Contacts: Applications in Thermal Contact Resistance
,”
J. Thermophys. Heat Transfer
,
13
, pp.
1
11
.10.2514/2.6466
15.
Yovanovich
,
M. M.
,
Muzychka
,
Y. S.
, and
Culham
,
J. R.
,
1999
, “
Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channels
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
495
500
.10.2514/2.6467
16.
Yovanovich
,
M. M.
,
1970
, “
On the Temperature Distribution and Constriction Resistance in Layered Media
,”
J. Compos. Mater.
,
4
(
4
), pp.
567
570
.10.1177/002199837000400414
17.
Muzychka
,
Y. S.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2004
, “
Thermal Spreading Resistance in Compound and Orthotropic Systems
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
45
51
.10.2514/1.1267
18.
Muzychka
,
Y. S.
, “
Thermal Spreading Resistance in a Multilayered Orthotropic Circular Disk With Interfacial Resistance and Variable Flux
,”
ASME
Paper No. IPACK2015-48243.10.1115/IPACK2015-48243
19.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2018
, “
Spreading Resistance in Multilayered Orthotropic Flux Channel With Different Conductivities in the Three Spatial Directions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
, p.
071302
.10.1115/1.4038712
20.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2019
, “
Spreading Resistance in Flux Tubes With Variable Heat Flux and Non-Uniform Convection
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
9
(
8
), pp.
1526
1534
.10.1109/TCPMT.2019.2910132
21.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2020
, “
Thermal Resistance of a Three Dimensional Flux Channel With Two-Dimensional Variable Convection
,”
AIAA J. Thermophys. Heat Transfer
,
34
(
2
), pp.
322
330
.10.2514/1.T5904
22.
Razavi
,
M.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2018
, “
Temperature Distribution in Flux Channels With Discrete Contact Boundary Conditions
,”
Heat Transfer Eng.
,
39
(
11
), pp.
946
956
.10.1080/01457632.2017.1357747
23.
Muzychka
,
Y. S.
,
2014
, “
Spreading Resistance in Compound Orthotropic Flux Tubes and Channels With Interfacial Resistance
,”
AIAA J. Thermophys. Heat Transfer
,
28
(
2
), pp.
313
319
.10.2514/1.T4203
24.
Muzychka
,
Y. S.
,
Bagnall
,
K.
, and
Wang
,
E.
,
2013
, “
Thermal Spreading Resistance and Heat Source Temperature in Compound Orthotropic Systems With Interfacial Resistance
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
11
), pp.
1826
1841
.10.1109/TCPMT.2013.2269273
25.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2019
, “
Effect of Temperature Dependent Thermal Conductivity on Spreading Resistance in Flux Channels
,”
AIAA J. Thermophys. Heat Transfer
,
33
(
1
), pp.
23
31
.10.2514/1.T5418
26.
Al-Khamaiseh
,
B.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2018
, “
Spreading Resistance in Multilayered Orthotropic Flux Channel With Temperature Dependent Thermal Conductivities
,”
AIAA J. Thermophys. Heat Transfer
,
32
(
2
), pp.
392
400
.10.2514/1.T5337
27.
Sexl
,
R. U.
, and
Burkhard
,
D. G.
,
1969
, “
An Exact Solution for Thermal Conduction Through a Two-Dimensional Eccentric Constriction
,”
Prog. Astronaut. Aeronaut.
,
21
, pp.
617
620
.10.1016/B978-0-12-395735-1.50036-X
28.
Bagnall
,
K.
,
Muzychka
,
Y. S.
, and
Wang
,
E.
,
2014
, “
Analytical Solution for Temperature Rise in Complex, Multi-Layer Structures With Discrete Heat Sources
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
4
(
5
), pp.
817
830
.10.1109/TCPMT.2014.2299766
29.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.10.1016/0017-9310(69)90011-8
30.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1966
,
Thermal Contact Resistance
,
MIT
,
Cambridge, MA
, Report No. DSR
74542
41
.
31.
Veziroglu
,
T. N.
, and
Chandra
,
S.
, “
Thermal Conductance of Two-Dimensional Constrictions
,”
AIAA
Paper No. 68-791.10.2514/6.68-791
32.
Gibson
,
R. D.
,
1976
, “
The Contact Resistance for a Semi-Infinite Cylinder in a Vacuum
,”
Appl. Energy
,
2
(
1
), pp.
57
65
.10.1016/0306-2619(76)90039-8
33.
Hunter
,
A.
, and
Williams
,
A.
,
1969
, “
Heat Flow Across Metallic Joints – The Constriction Alleviation Factor
,”
Int. J. Heat Mass Transfer
,
12
(
4
), pp.
524
526
.10.1016/0017-9310(69)90148-3
34.
Tio
,
K.-K.
, and
Sadhal
,
S. S.
,
1992
, “
Thermal Constriction Resistance: Effects of Boundary Conditions and Contact Geometries
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1533
1544
.10.1016/0017-9310(92)90043-R
35.
Mayer
,
M.
,
Hodes
,
M.
,
Kirk
,
T.
, and
Crowdy
,
D.
,
2019
, “
Effect of Surface Curvature on Contact Resistance Between Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
, p.
032002
.10.1115/1.4042441
36.
Negus
,
K. J.
, and
Yovanovich
,
M. M.
,
1984
, “
Constriction Resistance of Circular Flux Tubes With Mixed Boundary Conditions by Linear Superimposition of Neumann Solutions
,”
ASME
Paper No. 84-HT-84.10.1115/84-HT-84
37.
Plummer
,
J. D.
,
Deal
,
M.
, and
Griffin
,
P. B.
,
2000
,
Silicon VLSI Technology: Fundamentals, Practice and Modeling
, Prentice Hall, Upper Saddle River, NJ.
38.
Kurabayashi
,
K.
,
Asheghi
,
M.
,
Touzelbaev
,
M.
, and
Goodson
,
K.
,
1999
, “
Measurement of the Thermal Conductivity Anisotropy in Polyimide Films
,”
IEEE J. Microelectromech. Syst.
,
8
(
2
), pp.
180
191
.10.1109/84.767114
39.
Jain
,
A.
,
2023
, “
Thermal Spreading Resistance From an Isothermal Source Into a Finite-Thickness Body
,”
Int. J. Heat Mass Transfer
,
220
, p.
124946
.10.1016/j.ijheatmasstransfer.2023.124946
40.
Özışık
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
41.
Krishnan
,
G.
, and
Jain
,
A.
,
2023
, “
Theoretical Analysis of a Two-Dimensional Multilayer Diffusion Problem With General Convective Boundary Conditions Normal to the Layered Direction
,”
Int. J. Heat Mass Transfer
,
202
, p.
123723
.10.1016/j.ijheatmasstransfer.2022.123723
42.
Sarkar
,
D.
,
Shah
,
K.
,
Haji-Sheikh
,
A.
, and
Jain
,
A.
,
2014
, “
Analytical Modeling of Temperature Distribution in an Anisotropic Cylinder With Circumferentially-Varying Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1027
1033
.10.1016/j.ijheatmasstransfer.2014.08.060
43.
Strang
,
G.
,
2023
,
Introduction to Linear Algebra
, 6th ed., Wellesley-Cambridge Press, Wellesley, MA.
44.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
You do not currently have access to this content.