Abstract

Recently, there has been a renewed interest in solid-to-liquid phase-change materials (PCMs) for thermal energy storage (TES) solutions in response to ambitious decarbonization goals. While PCMs have very high thermal storage capacities, their typically low thermal conductivities impose limitations on energy charging and discharging rates. Extensive research efforts have focused on improving PCM thermal conductivity through the incorporation of additives. However, this approach presents challenges such as achieving uniform mixtures, maintaining high latent heat, and cost. Alternatively, it has been demonstrated that, in this study, reducing the length scale of the PCM-encasement thickness can eliminate the low thermal conductivity effect of PCMs. To illustrate this concept, a one-dimensional PCM slab was numerically simulated. The thickness of the slab was varied to represent dimensions found in flow passages of compact heat exchangers, and the heat transfer coefficient of the heating fluid was varied to represent lower and upper bounds while also including nominal values encountered in air-to-air heat exchangers. The thermal conductivity was parametrically varied from the natural value of the PCM to simulated enhanced values (potentially achieved through additives) of up to 400 times larger. Results show that reducing the PCM-encasement thickness yields substantially better performance than by improving the thermal conductivity, thereby demonstrating the potential for compact heat exchanger design to overcome the PCM thermal conductivity limitations.

References

1.
Telkes
,
M.
,
1980
, “
Thermal Energy Storage in Salt Hydrates
,”
Sol. Energy Mater.
,
2
(
4
), pp.
381
393
.10.1016/0165-1633(80)90033-7
2.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
3.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2016
, “
Resolving the Energy-Water Nexus in Large Thermoelectric Power Plants: A Case for Application of Enhanced Heat Transfer and High-Performance Thermal Energy Storage
,”
J. Enhanced Heat Transfer
,
23
(
4
), pp.
263
282
.10.1615/JEnhHeatTransf.2017024681
4.
Kannan
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2023
, “
Experimental Study of Enhanced Heat Transfer in Phase Change Material Based Thermal Energy Storage in Compact Heat Exchangers
,”
ASME
Paper No. HT2023-107111.10.1115/HT2023-107111
5.
Heier
,
J.
,
Bales
,
C.
, and
Martin
,
V.
,
2015
, “
Combining Thermal Energy Storage With Buildings – A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1305
1325
.10.1016/j.rser.2014.11.031
6.
Boetcher
,
S. K. S.
,
2022
, “
Cool Thermal Energy Storage
,”
Solid–Liquid Thermal Energy Storage
,
CRC Press
, Boca Raton, FL, pp.
243
256
.
7.
Boetcher
,
S. K. S.
,
2023
, “
Shifting the Paradigm of Latent Heat Thermal Energy Storage Systems Through Additive Manufacturing
,”
Proceeding of International Heat Transfer Conference 17
, Begellhouse, Aug.
14
18
.
8.
Freeman
,
T. B.
,
Foster
,
K. E.
,
Troxler
,
C. J.
,
Irvin
,
C. W.
,
Aday
,
A.
,
Boetcher
,
S. K. S.
,
Mahvi
,
A.
,
Smith
,
M. K.
, and
Odukomaiya
,
A.
,
2023
, “
Advanced Materials and Additive Manufacturing for Phase Change Thermal Energy Storage and Management: A Review
,”
Adv. Energy Mater.
,
13
(
24
), p.
2204208
.10.1002/aenm.202204208
9.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer 8e
,
Cengage Learning
,
Boston, MA
.
10.
Ma
,
C.
,
Zhang
,
Y.
,
Chen
,
X.
,
Song
,
X.
, and
Tang
,
K.
,
2020
, “
Experimental Study of an Enhanced Phase Change Material of Paraffin/Expanded Graphite/Nano-Metal Particles for a Personal Cooling System
,”
Materials
,
13
(
4
), p.
980
.10.3390/ma13040980
11.
Wong
,
T. L.
,
Vallés
,
C.
,
Nasser
,
A.
, and
Abeykoon
,
C.
,
2023
, “
A Critical Experimental Evaluation of Hexagonal Boron Nitride, Graphene Oxide and Graphite as Thermally Conductive Fillers in Organic PCMs
,”
J. Energy Storage
,
72
, p.
108523
.10.1016/j.est.2023.108523
12.
Frusteri
,
F.
,
Leonardi
,
V.
,
Vasta
,
S.
, and
Restuccia
,
G.
,
2005
, “
Thermal Conductivity Measurement of a PCM Based Storage System Containing Carbon Fibers
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1623
1633
.10.1016/j.applthermaleng.2004.10.007
13.
Wang
,
Y.
,
Bailey
,
J.
,
Zhu
,
Y.
,
Zhang
,
Y.
,
Boetcher
,
S. K. S.
,
Li
,
Y.
, and
Wu
,
C.
,
2022
, “
Application of Carbon Nanotube Prepared From Waste Plastic to Phase Change Materials: The Potential for Battery Thermal Management
,”
Waste Manage.
,
154
, pp.
96
104
.10.1016/j.wasman.2022.10.003
14.
Wang
,
J.
,
Li
,
Y.
,
Zheng
,
D.
,
Mikulčić
,
H.
,
Vujanović
,
M.
, and
Sundén
,
B.
,
2021
, “
Preparation and Thermophysical Property Analysis of Nanocomposite Phase Change Materials for Energy Storage
,”
Renewable Sustainable Energy Rev.
,
151
, p.
111541
.10.1016/j.rser.2021.111541
15.
Shamberger
,
P. J.
,
2016
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
2
), p.
024502
.10.1115/1.4031252
16.
Barako
,
M. T.
,
Lingamneni
,
S.
,
Katz
,
J. S.
,
Liu
,
T.
,
Goodson
,
K. E.
, and
Tice
,
J.
,
2018
, “
Optimizing the Design of Composite Phase Change Materials for High Thermal Power Density
,”
J. Appl. Phys.
,
124
(
14
), p.
145103
.10.1063/1.5031914
17.
Yazawa
,
K.
,
Shamberger
,
P. J.
, and
Fisher
,
T. S.
,
2019
, “
Ragone Relations for Thermal Energy Storage Technologies
,”
Front. Mech. Eng.
,
5
, p.
29
.10.3389/fmech.2019.00029
18.
Zhao
,
W.
,
Yu
,
G.
,
Li
,
S.
,
Liu
,
Z.
, and
Wu
,
L.
,
2023
, “
Rate Capability and Ragone Plots for Thermal Management Multifunctional Structure Designing
,”
Int. J. Mech. Sci.
,
252
, p.
108367
.10.1016/j.ijmecsci.2023.108367
19.
James
,
N.
,
Mahvi
,
A.
, and
Woods
,
J.
,
2022
, “
Optimizing Phase Change Composite Thermal Energy Storage Using the Thermal Ragone Framework
,”
J. Energy Storage
,
56
, p.
105875
.10.1016/j.est.2022.105875
20.
Woods
,
J.
,
Mahvi
,
A.
,
Goyal
,
A.
,
Kozubal
,
E.
,
Odukomaiya
,
A.
, and
Jackson
,
R.
,
2021
, “
Rate Capability and Ragone Plots for Phase Change Thermal Energy Storage
,”
Nat. Energy
,
6
(
3
), pp.
295
302
.10.1038/s41560-021-00778-w
21.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
, Hoboken, NJ.
22.
Freeman
,
T. B.
,
Nabutola
,
K.
,
Spitzer
,
D.
,
Currier
,
P. N.
, and
Boetcher
,
S. K. S.
,
2018
, “
3D-Printed PCM/HDPE Composites for Battery Thermal Management
,”
ASME
Paper No. IMECE2018-86081.10.1115/IMECE2018-86081
23.
Freeman
,
T. B.
,
Spitzer
,
D.
,
Currier
,
P. N.
,
Rollin
,
V.
, and
Boetcher
,
S. K. S.
,
2019
, “
Phase-Change Materials/HDPE Composite Filament: A First Step Toward Use With 3D Printing for Thermal Management Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
054502
.10.1115/1.4042592
24.
Freeman
,
T. B.
,
Messenger
,
M. A.
,
Troxler
,
C. J.
,
Nawaz
,
K.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2021
, “
Fused Filament Fabrication of Novel Phase-Change Material Functional Composites
,”
Addit. Manuf.
,
39
, p.
101839
.10.1016/j.addma.2021.101839
25.
Nawaz
,
K.
,
Freeman
,
T. B.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2021
, “
Moisture Affinity of HDPE/Phase-Change Material Composites for Thermal Energy Storage Applications
,”
RSC Adv.
,
11
(
49
), pp.
30569
30573
.10.1039/D1RA03618A
26.
Messenger
,
M. A.
,
Troxler
,
C. J.
,
Melendez
,
I.
,
Freeman
,
T. B.
,
Reed
,
N.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2023
, “
Mechanical and Thermal Characterization of Phase-Change Material and High-Density Polyethylene Functional Composites for Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061006
.10.1115/1.4062197
27.
Melendez
,
I.
,
Troxler
,
C. J.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2023
, “
Phase-Change Material Suspension in Photocurable Resin for Liquid Crystal Display 3D Printing of Thermal Energy Storage Composites
,”
Proceeding of International Heat Transfer Conference 17
, Begellhouse, Aug.
14
18
.
28.
Shamsundar
,
N.
, and
Sparrow
,
E. M.
,
1975
, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
97
(
3
), pp.
333
340
.10.1115/1.3450375
29.
PureTemp
,
2023
, “
PureTemp 29 Data Sheet
,” accessed Oct. 2, 2023, https://puretemp.com/wp-content/uploads/2021/06/PureTemp29TechnicalDataSheet.pdf
30.
Chen
,
L.
,
Li
,
Z.
, and
Guo
,
Z.-Y.
,
2009
, “
Experimental Investigation of Plastic Finned-Tube Heat Exchangers, With Emphasis on Material Thermal Conductivity
,”
Exp. Therm. Fluid Sci.
,
33
(
5
), pp.
922
928
.10.1016/j.expthermflusci.2009.04.001
31.
Zaheed
,
L.
, and
Jachuck
,
R. J.
,
2004
, “
Review of Polymer Compact Heat Exchangers, With Special Emphasis on a Polymer Film Unit
,”
Appl. Therm. Eng.
,
24
(
16
), pp.
2323
2358
.10.1016/j.applthermaleng.2004.03.018
32.
Lowrey
,
S.
,
Hughes
,
C.
, and
Sun
,
Z.
,
2021
, “
Thermal-Hydraulic Performance Investigation of an Aluminium Plate Heat Exchanger and a 3D-Printed Polymer Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
194
(
April
), p.
117060
.10.1016/j.applthermaleng.2021.117060
33.
Freeman
,
T. B.
,
Nawaz
,
K.
,
Manglik
,
R. M.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2021
, “
Additively Manufactured Polymer-Encapsulated Phase-Change Material Heat Exchangers for Residential Thermal Energy Storage
,”
ASHRAE Trans.
,
127
(
Part 2
), pp.
400
408
.
34.
Kakac
,
S.
,
Yener
,
Y.
, and
Naveira-Cotta
,
C. P.
,
2018
,
Heat Conduction
,
CRC Press Taylor & Francis Group
,
Boca Raton, FL
.
35.
Williams
,
J. D.
, and
Peterson
,
G. P.
,
2021
, “
A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials
,”
Nanomaterials
,
11
(
10
), p.
2578
.10.3390/nano11102578
36.
Lilley
,
D.
,
Menon
,
A. K.
,
Kaur
,
S.
,
Lubner
,
S.
, and
Prasher
,
R. S.
,
2021
, “
Phase Change Materials for Thermal Energy Storage: A Perspective on Linking Phonon Physics to Performance
,”
J. Appl. Phys.
,
130
(
22
), p.
220903
.10.1063/5.0069342
You do not currently have access to this content.