Abstract

Under the influence of secondary flow, the film cooling deviates from the flow direction on the turbine blade, which directly results in undesirable uneven film coverage. On the pressure side, the film appears divergent, while on the suction side, it is bunched. To solve this problem, a kind of subregional compound angle is proposed, in which the angle in the spanwise direction is different in different regions depending on the strength and direction of the secondary flow. Four rows of film holes with five kinds of subregional compound angles are provided on the pressure side, while two rows of film holes with different subregional compound angles are provided on the suction side. The Reynolds Average Navier–Stokes (RANS) method of the SST kω turbulence model is chosen to solve the above blade arrangement. The results show that a significant improvement can be achieved by the introducing subregional compound injection of the film coolant compared to the case of simple injection. In compound injection, the injectant maintains sufficient momentum to prevent the coolant from being swept away by the secondary flow. This was found to be largely the case for most holes on the pressure side, and some holes on the suction side. However, for holes near the downstream section of the suction surface of the blade, where the passage vortex is strongest, no value is found for the compound angle that could redirect the coolant along the blade profile without radial deviation. In some cases, excessive values of the compound angle led to jet liftoff rather than spreading the film along the surface.

References

1.
Perepezko
,
J. H.
,
2009
, “
The Hotter the Engine, the Better
,”
Science
,
326
(
5956
), pp.
1068
1069
.10.1126/science.1179327
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, Chaps. 2 and 3.
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
4.
McClintic
,
J. W.
, and
Klavetter
,
S. R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
, p.
071006
.10.1115/1.4029157
5.
Andreopoulos
,
J.
,
1985
, “
On the Structure of Jets in a Crossflow
,”
J. Fluid Mech.
,
157
, pp.
163
197
.10.1017/S0022112085002348
6.
Wang
,
C. H.
,
Zhang
,
J. Z.
,
Feng
,
H. K.
, and
Huang
,
Y.
,
2018
, “
Large Eddy Simulation of Film Cooling Flow From a Fan-Shaped Hole
,”
Appl. Therm. Eng.
,
129
, pp.
855
870
.10.1016/j.applthermaleng.2017.10.088
7.
Kusterer
,
K.
,
Tekin
,
N.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2012
, “
Experimental and Numerical Investigations of the NEKO-MIMI Film Cooling Technology
,” ASME Paper No. GT2012-68400. 10.1115/GT2012-68400
8.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” ASME Paper No. GT-2002-30178.10.1115/GT2002-30178
9.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.10.1016/0017-9310(74)90007-6
10.
Berhe
,
M. K.
, and
Patankar
,
S. V.
,
1999
, “
Curvature Effects on Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
781
791
.10.1115/1.2836732
11.
Ligrani
,
P. M.
,
Wigle
,
J. M.
, and
Jackson
,
S. W.
,
1994
, “
Film Cooling From Holes With Compound Angle Orientations: Part 2-Results Downstream of a Single Row of Holes With 6d Spanwise Spacing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
116
(
2
), pp.
353
362
.10.1115/1.2911407
12.
Li
,
W.
,
Lu
,
X.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
High Resolution Measurements of Film Cooling Performance of Simple and Compound Angle Cylindrical Holes With Varying Hole Length-to-Diameter Ratio, Part I: Adiabatic Film Effectiveness
,”
Int. J. Therm. Sci.
,
124
, pp.
146
161
.10.1016/j.ijthermalsci.2017.10.013
13.
Ligrani
,
P. M.
,
Joseph
,
S. L.
,
Ortiz
,
A.
, and
Evans
,
D. L.
,
1988
, “
Heat Transfer in Film-Cooled Turbulent Boundary Layers at Different Blowing Ratios as Affected by Longitudinal Vortices
,”
Exp. Therm. Fluid Sci.
,
1
(
4
), pp.
347
362
.10.1016/0894-1777(88)90015-5
14.
Ligrani
,
P. M.
,
Ortiz
,
A.
,
Joseph
,
S. L.
, and
Evans
,
D. L.
,
1989
, “
Effects of Embedded Vortices on Film-Cooled Turbulent Boundary Layers
,”
ASME J. Turbomach.
,
111
(
1
), pp.
71
77
.10.1115/1.3262239
15.
Ligrani
,
P. M.
,
Subramanian
,
C. S.
,
Craig
,
D. W.
, and
Kaisuwan
,
P.
,
1991
, “
Effects of Vortices With Different Circulations on Heat Transfer and Injectant Downstream of a Row of Film-Cooling Holes in a Turbulent Boundary Layer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
113
(
1
), pp.
79
90
.10.1115/1.2910555
16.
Ligrani
,
P. M.
, and
Mitchell
,
S. W.
,
1994
, “
Interactions Between Embedded Vortices and Injectant From Film Cooling Holes With Compound Angle Orientations in a Turbulent Boundary Layer
,”
ASME J. Turbomach.
,
116
(
1
), pp.
80
91
.10.1115/1.2928281
17.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines–A Review
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
18.
Varty
,
J. E.
,
Soma
,
L. W.
,
Ames
,
F. E.
, and
Acharya
,
S.
,
2018
, “
Vane Suction Surface Heat Transfer in Regions of Secondary Flows: The Influence of Turbulence Level, Reynolds Number, and the Endwall Boundary Condition
,”
ASME J. Turbomach.
,
140
(
2
), p.
021010
.10.1115/1.4038281
19.
Lee
,
L.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turb. Power
,
99
(
1
), p.
21
.
20.
Kukutla
,
P. R.
, and
Prasad
,
P. R.
,
2017
, “
Secondary Flow Visualization on Stagnation Row of a Combined Impingement and Film Cooled High-Pressure Gas Turbine Nozzle Guide Vane Using PIV Technique
,”
J. Visual.
,
20
(
4
), pp.
817
832
.10.1007/s12650-017-0434-6
21.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2007
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Axial Shaped Holes
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2139
2152
.10.1016/j.ijheatmasstransfer.2007.11.010
22.
Gao
,
Z.
,
Narzary
,
D. P.
, and
Han
,
J. C.
,
2009
, “
Film Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011019
.10.1115/1.2813012
23.
Narzary
,
D. P.
,
Liu
,
K.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.10.1115/1.4003025
24.
Zhou
,
Z.
,
Li
,
H.
,
Xie
,
G.
,
Xia
,
S.
, and
Zhou
,
J.
,
2020
, “
The Cooling Performance of Three-Row Compound Angle Holes on the Suction Surface of a Rotating Turbine Blade
,”
Propuls Power Res.
,
10
(
1
), pp.
23
36
.10.1016/j.jppr.2020.09.001
25.
Mhetras
,
S.
, and
Han
,
J. C.
,
2012
, “
Effect of Flow Parameter Variations on Full Coverage Film Cooling Effectiveness for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
134
(
1
), p.
011004
.10.1115/1.4003228
26.
Li
,
Z. G.
,
Bai
,
B.
,
Li
,
J.
,
Mao
,
S.
,
Ng
,
F. W.
,
Xu
,
H. Z.
, and
Fox
,
M.
,
2022
, “
Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow
,”
ASME J. Turbomach.
,
144
(
4
), p.
041004
.10.1115/1.4052457
27.
Sakaoglu
,
S.
, and
Kahveci
,
H. S.
,
2020
, “
Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer
,”
ASME J. Turbomach.
,
142
(
2
), p.
021008
.10.1115/1.4045466
28.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.10.1115/1.3446247
29.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.10.1115/1.3230352
You do not currently have access to this content.