Abstract

Natural convection in fluid-saturated, horizontal porous-media is quintessential to many applications like geothermal reservoirs and solar thermal storage systems. Researchers have dedicated substantial effort over the years in pursuit of altering natural convection within a horizontal porous-media (Darcy–Bénard) system. Although significant research efforts have been directed toward understanding the effects of bounding walls in horizontal (Rayleigh–Bénard) convection systems, similar investigations for Darcy–Bénard convection systems are still lacking. Therefore, this study examines the effect of thermal properties of horizontal bounding plates on porous-media Nusselt number at high Rayleigh–Darcy numbers (105107). Numerical simulations are performed by employing Darcy–Forchheimer model within a three-dimensional cylindrical computational domain to emulate Darcy–Bénard systems for two aspect ratios (1 and 2) and six different plate materials having nondimensional plate thicknesses of 0.02, 0.08, and 0.16. Polypropylene and compressed CO2 gas are chosen as solid and fluid phases for the porous media, respectively, that encompass a range of Darcy numbers (106103). Findings reveal that when the ratio of thermal resistances of porous layer and plates falls below 4.61, the corrected Nusselt number deviates by more than 10% from the corresponding ideal Nusselt number with infinitely conducting bounding plates. The study also proposes a correction factor to estimate this deviation, which shows a good agreement with numerical results.

References

1.
Cheng
,
P.
,
1979
, “
Heat Transfer in Geothermal Systems
,”
Advances in Heat Transfer
, Vol.
14
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
105
.
2.
Aziz
,
K.
,
Bories
,
S. A.
, and
Combarnous
,
M. A.
,
1973
, “
The Influence of Natural Convection in Gas, Oil and Water Reservoirs
,”
J. Can. Pet. Technol.
,
12
(
2
), pp.
41
47
.10.2118/73-02-05
3.
Rashidi
,
S.
,
Esfahani
,
J. A.
, and
Karimi
,
N.
,
2018
, “
Porous Materials in Building Energy Technologies—A Review of the Applications, Modelling and Experiments
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
229
247
.10.1016/j.rser.2018.03.092
4.
Kim
,
D. M.
, and
Viskanta
,
R.
,
1984
, “
Study of the Effects of Wall Conductance on Natural Convection in Differently Oriented Square Cavities
,”
J. Fluid Mech.
,
144
, pp.
153
176
.10.1017/S0022112084001555
5.
Kaminski
,
D. A.
, and
Prakash
,
C.
,
1986
, “
Conjugate Natural Convection in a Square Enclosure: Effect of Conduction in One of the Vertical Walls
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
1979
1988
.10.1016/0017-9310(86)90017-7
6.
Misra
,
D.
, and
Sarkar
,
A.
,
1997
, “
Finite Element Analysis of Conjugate Natural Convection in a Square Enclosure With a Conducting Vertical Wall
,”
Comput. Methods Appl. Mech. Eng.
,
141
(
3–4
), pp.
205
219
.10.1016/S0045-7825(96)01109-7
7.
Verzicco
,
R.
,
2004
, “
Effects of Nonperfect Thermal Sources in Turbulent Thermal Convection
,”
Phys. Fluids
,
16
(
6
), pp.
1965
1979
.10.1063/1.1723463
8.
Brown
,
E.
,
Nikolaenko
,
A.
,
Funfschilling
,
D.
, and
Ahlers
,
G.
,
2005
, “
Heat Transport in Turbulent Rayleigh–Bénard Convection: Effect of Finite Top-and Bottom-Plate Conductivities
,”
Phys. Fluids
,
17
(
7
), p.
075108
.10.1063/1.1964987
9.
Mbaye
,
M.
,
Bilgen
,
E.
, and
Vasseur
,
P.
,
1993
, “
Natural-Convection Heat Transfer in an Inclined Porous Layer Boarded by a Finite-Thickness Wall
,”
Int. J. Heat Fluid Flow
,
14
(
3
), pp.
284
291
.10.1016/0142-727X(93)90060-Z
10.
Chang
,
W. J.
, and
Lin
,
H. C.
,
1994
, “
Wall Heat Conduction Effect on Natural Convection in an Enclosure Filled With a Non-Darcian Porous Medium
,”
Numer. Heat Transfer
,
25
(
6
), pp.
671
684
.10.1080/10407789408955972
11.
Saeid
,
N. H.
,
2007
, “
Conjugate Natural Convection in a Porous Enclosure: Effect of Conduction in One of the Vertical Walls
,”
Int. J. Therm. Sci.
,
46
(
6
), pp.
531
539
.10.1016/j.ijthermalsci.2006.08.003
12.
Saeid
,
N. H.
,
2007
, “
Conjugate Natural Convection in a Porous Enclosure Sandwiched by Finite Walls Under Thermal Nonequilibrium Conditions
,”
J. Porous Media
,
11
(
3
), pp.
259
275
.10.1615/JPorMedia.v11.i3.40
13.
Al-Amiri
,
A.
,
Khanafer
,
K.
, and
Pop
,
I.
,
2008
, “
Steady-State Conjugate Natural Convection in a Fluid-Saturated Porous Cavity
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4260
4275
.10.1016/j.ijheatmasstransfer.2007.12.026
14.
Jonsson
,
T.
, and
Catton
,
I.
,
1987
, “
Prandtl Number Dependence of Natural Convection in Porous Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
2
), pp.
371
377
.10.1115/1.3248090
15.
Kladias
,
N.
, and
Prasad
,
V.
,
1991
, “
Experimental Verification of Darcy–Brinkman–Forchheimer Flow Model for Natural Convection in Porous Media
,”
J. Thermophys. Heat Transfer
,
5
(
4
), pp.
560
576
.10.2514/3.301
16.
Keene
,
D. J.
, and
Goldstein
,
R. J.
,
2015
, “
Thermal Convection in Porous Media at High Rayleigh Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
3
), p.
034503
.10.1115/1.4029087
17.
Ataei-Dadavi
,
I.
,
Chakkingal
,
M.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Tummers
,
M. J.
,
2019
, “
Flow and Heat Transfer Measurements in Natural Convection in Coarse-Grained Porous Media
,”
Int. J. Heat Mass Transfer
,
130
, pp.
575
584
.10.1016/j.ijheatmasstransfer.2018.10.118
18.
Saleh
,
H.
,
Saeid
,
N. H.
,
Hashim
,
I.
, and
Mustafa
,
Z.
,
2011
, “
Effect of Conduction in Bottom Wall on Darcy–Bénard Convection in a Porous Enclosure
,”
Transp. Porous Media
,
88
(
3
), pp.
357
368
.10.1007/s11242-011-9743-8
19.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2019
, “
Effect of Sidewall Conductance on Nusselt Number for Rayleigh–Bénard Convection: A Semi-Analytical and Experimental Correction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
12
), p.
122504
.10.1115/1.4044659
20.
Ahlers
,
G.
,
2000
, “
Effect of Sidewall Conductance on Heat-Transport Measurements for Turbulent Rayleigh–Bénard Convection
,”
Phys. Rev. E
,
63
(
1
), p.
015303
.10.1103/PhysRevE.63.015303
21.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2020
, “
High-Rayleigh-Number Thermal Convection of Compressed Gases in Inclined Rectangular Enclosures
,”
Phys. Fluids
,
32
(
1
), p.
017103
.10.1063/1.5134820
22.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, Vol.
3
,
Springer
,
New York
.
23.
Omri
,
M.
, and
Galanis
,
N.
,
2007
, “
Numerical Analysis of Turbulent Buoyant Flows in Enclosures: Influence of Grid and Boundary Conditions
,”
Int. J. Therm. Sci.
,
46
(
8
), pp.
727
738
.10.1016/j.ijthermalsci.2006.10.006
24.
De Lemos
,
M. J. S.
,
2012
,
Turbulence in Porous Media: Modeling and Applications
,
Elsevier
,
Amsterdam, The Netherlands
.
25.
Aichlmayr
,
H. T.
, and
Kulacki
,
F. A.
,
2006
, “
The Effective Thermal Conductivity of Saturated Porous Media
,”
Adv. Heat Transfer
,
39
, pp.
377
460
.10.1016/S0065-2717(06)39004-1
26.
Sakamoto
,
H.
, and
Kulacki
,
F. A.
,
2008
, “
Effective Thermal Diffusivity of Porous Media in the Wall Vicinity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
2
), p.
022601
.10.1115/1.2787022
27.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1994
, “
Modified Zehner-Schlunder Models for Stagnant Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2751
2759
.10.1016/0017-9310(94)90392-1
28.
Kunii
,
D.
, and
Smith
,
J. M.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.10.1002/aic.690060115
29.
Zehner
,
P.
, and
Schlunder
,
E. U.
,
1970
, “
Thermal Conductivity of Packings at Moderate Temperatures
,”
Chem. Ing. Tech.
,
42
(
14
), pp.
933
941
.10.1002/cite.330421408
30.
Krupiczka
,
R.
,
1967
, “
Analysis of Thermal Conductivity in Granular Materials
,”
Int. Chem. Eng.
,
7
(
1
), p.
122
.https://scholar.google.com/scholar_lookup?title=Analysis%20of%20thermal%20conductivity%20in%20granular%20materials&publication_year=1967&author=R.%20Krupiczka
31.
Tavman
,
I. H.
,
1996
, “
Effective Thermal Conductivity of Granular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
169
176
.10.1016/0735-1933(96)00003-6
32.
Prasad
,
V.
,
Kladias
,
N.
,
Bandyopadhaya
,
A.
, and
Tian
,
Q.
,
1989
, “
Evaluation of Correlations for Stagnant Thermal Conductivity of Liquid-Saturated Porous Beds of Spheres
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1793
1796
.10.1016/0017-9310(89)90061-6
33.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
545
551
.10.1016/0017-9310(76)90168-X
34.
Lemmon
,
E. W.
,
McLinden
,
M. O.
,
Friend
,
D. G.
,
Linstrom
,
P.
, and
Mallard
,
W.
,
2011
, “
Nist Chemistry Webbook, NIST Standard Reference Database Number 69
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
You do not currently have access to this content.