Abstract

Performance of a novel ultracompact thermal energy storage (TES) heat exchanger, designed as a microchannel finned-tube exchanger is presented. With water as the heating–cooling fluid in the microchannels, a salt hydrate phase change material (PCM), lithium nitrate trihydrate (LiNO3 · 3H2O), was encased on the fin side. To establish the hypothesis that small-length-scale encasement (<3 mm) of PCM substantially enhances heat transfer to yield very high power-density energy storage, heat exchanger designs with 10 and 24 fins/inch were considered. They were subjected to thermal cycling, or repeated heating (melting) and cooling (freezing), with inlet fluid flow mimicking diurnal variation between 42 °C and 25 °C (representing typical arid-region conditions) over an accelerated time period. By employing salt self-seeding to obviate subcooling during cooling or recrystallization, the TES was found to exhibit stable long-term (100 heating–cooling cycles) operation with very high PCM-side heat transfer coefficients (∼100–500 W/m2 K) and storage power density (∼160–175 kW/m3). In fact, with optimization of heating–cooling fluid flowrate for given charging–discharging time period and exchanger size, power density >300 kW/m3 can be achieved. The results clearly establish that highly compact heat exchangers used as TES units can provide very high-performance alternatives to conventional ones.

References

1.
Guelpa
,
L.
,
Bischi
,
A.
,
Verda
,
V.
,
Chertkov
,
M.
, and
Lund
,
H.
,
2019
, “
Towards Future Infrastructures for Sustainable Multi-Energy Systems: A Review
,”
Energy Convers. Manage.
,
184
, pp.
2
21
.10.1016/j.energy.2019.05.057
2.
IRENA
,
2020
,
Innovation Outlook: Thermal Energy Storage
,
International Renewable Energy Agency
,
Abu Dhabi, UAE
.
3.
Lane
,
G. A.
, and
Lane
,
G.
,
1983
,
Solar Heat Storage: Latent Heat Material: Volume I: Background and Scientific Principles
,
CRC Press
,
Boca Raton, FL
.
4.
Sharma
,
S. D.
, and
Sagara
,
K.
,
2005
, “
Latent Heat Storage Materials and Systems: A Review
,”
Int. J. Green Energy
,
2
(
1
), pp.
1
56
.10.1081/GE-200051299
5.
Sharma
,
A.
,
Tyagi
,
V. V.
,
Chen
,
C. R.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.10.1016/j.rser.2007.10.005
6.
Doladoa
,
P.
,
Lazaro
,
A.
,
Delgado
,
M.
,
Peñalosa
,
C.
,
Mazo
,
J.
,
Marin
,
J. M.
, and
Zalba
,
B.
,
2012
, “
Thermal Energy Storage by PCM-Air Heat Exchangers: Temperature Maintenance in a Room
,”
Energy Procedia
,
30
, pp.
225
234
.10.1016/j.egypro.2012.11.027
7.
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2016
, “
Resolving the Energy–Water Nexus in Large Thermoelectric Power Plants: A Case for Application of Enhanced Heat Transfer and High-Performance Thermal Energy Storage
,”
J. Enhanced Heat Transfer
,
23
(
4
), pp.
263
282
.10.1615/JEnhHeatTransf.2017024681
8.
Telkes
,
M.
,
1980
, “
Thermal Energy Storage in Salt Hydrates
,”
Sol. Energy Mater.
,
2
(
4
), pp.
381
393
.10.1016/0165-1633(80)90033-7
9.
Lane
,
G. A.
,
1980
, “
Low Temperature Heat Storage With Phase Change Materials
,”
Int. J. Ambient Energy
,
1
(
3
), pp.
155
168
.10.1080/01430750.1980.9675731
10.
Grønvold
,
F.
, and
Meisingset
,
K. K.
,
1983
, “
Thermodynamic Properties and Phase Transitions of Salt Hydrates Between 270 and 400 K II. Na2CO3·H2O and Na2CO3·10H2O
,”
J. Chem. Thermodyn.
,
15
(
9
), pp.
881
889
.10.1016/0021-9614(83)90094-0
11.
Kenisarin
,
M.
, and
Mahkamov
,
K.
,
2016
, “
Salt Hydrates as Latent Heat Storage Materials: Thermophysical Properties and Costs
,”
Sol. Energy Mater. Sol. Cells
,
145
, pp.
255
286
.10.1016/j.solmat.2015.10.029
12.
Kannan
,
S.
,
Kumar
,
N.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2022
, “
Phase-Transition Efficacy and Material Compatibility With Thermal Cycling of Lithium Nitrate Trihydrate as a Phase-Change Material
,”
Ind. Eng. Chem. Res.
,
61
(
43
), pp.
16341
16351
.10.1021/acs.iecr.2c02746
13.
Tan
,
P.
,
Lindberg
,
P.
,
Eichler
,
K.
,
Löveryd
,
P.
,
Johansson
,
P.
, and
Kalagasidis
,
A. S.
,
2020
, “
Effect of Phase Separation and Supercooling on the Storage Capacity in a Commercial Latent Heat Thermal Energy Storage: Experimental Cycling of a Salt Hydrate PCM
,”
J. Energy Storage
,
29
, p.
101266
.10.1016/j.est.2020.101266
14.
Nagengast
,
B.
,
1999
, “
A History of Comfort Cooling Using Ice
,”
ASHRAE J.
,
41
(
2
), pp.
49
55
.https://www.ashrae.org/file%20library/about/mission%20and%20vision/ashrae%20and%20industry%20history/a-history-of-comfort-cooling-using-ice.pdf
15.
Lindsay
,
B. B.
, and
Andrepont
,
J. S.
,
2019
, “
Evolution of Thermal Energy Storage for Cooling Applications
,”
ASHRAE J.
,
61
(
10
), pp.
42
59
.https://www.ashrae.org/file%20library/technical%20resources/ashrae%20journal/125thanniversaryarticles/42-59_bares.pdf
16.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
17.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
and
A. D.
Kraus
,
eds.
,
Wiley
,
Hoboken, NJ
, Chap.
14
.
18.
Manglik
,
R. M.
,
2019
, “
Enhanced Dry-Cooling System and Method for Increasing Power Plant Efficiency and Output
,” U.S. Patent No. 10,227,897.
19.
López-Navarro
,
A.
,
Biosca-Taronger
,
J.
,
Torregrosa-Jaime
,
B.
,
Martínez-Galván
,
I.
,
Corberán
,
J. M.
,
Esteban-Matías
,
J. C.
, and
Payá
,
J.
,
2013
, “
Experimental Investigation of the Temperatures and Performance of a Commercial Ice-Storage Tank
,”
Int. J. Refrig.
,
36
(
4
), pp.
1310
1318
.10.1016/j.ijrefrig.2012.09.008
20.
Selvnes
,
H.
,
Allouche
,
Y.
,
Manescu
,
R. I.
, and
Hafner
,
A.
,
2021
, “
Review on Cold Thermal Energy Storage Applied to Refrigeration Systems Using Phase Change Materials
,”
Therm. Sci. Eng. Prog.
,
22
, p.
100807
.10.1016/j.tsep.2020.100807
21.
Evapco,
2022
, “
Thermal Ice Storage: Application and Design Guide
,” EVAPCO Inc., Taneytown, MD, accessed Nov. 3, 2022, https://www.evapco.com/
22.
Baltimore
,
2022
, “
Air Coil: Ice Thermal Storage
,” Baltimore Aircoil Compan, Jessup, MD, accessed Nov. 3, 2022, https://baltimoreaircoil.com/
23.
Kant
,
K.
,
Biwole
,
P. H.
,
Shamseddine
,
I.
,
Tlaiji
,
G.
,
Pennec
,
F.
, and
Fardoun
,
F.
,
2021
, “
Recent Advances in Thermophysical Properties Enhancement of Phase Change Materials for Thermal Energy Storage
,”
Sol. Energy Mater. Sol. Cells
,
231
, p.
111309
.10.1016/j.solmat.2021.111309
24.
Lilley
,
D.
,
Menon
,
A. K.
,
Kaur
,
S.
,
Lubner
,
S.
, and
Prasher
,
R. S.
,
2021
, “
Phase Change Materials for Thermal Energy Storage: A Perspective on Linking Phonon Physics to Performance
,”
J. Appl. Phys.
,
130
(
22
), p.
220903
.10.1063/5.0069342
25.
Williams
,
J. D.
, and
Peterson
,
G. P.
,
2021
, “
A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials
,”
Nanomaterials
,
11
(
10
), p.
2578
.10.3390/nano11102578
26.
Amudhalapalli
,
G. K.
, and
Devanuri
,
J. K.
,
2022
, “
Synthesis, Characterization, Thermophysical Properties, Stability and Applications of Nanoparticle Enhanced Phase Change Materials—A Comprehensive Review
,”
Therm. Sci. Eng. Prog.
,
28
, p.
101049
.10.1016/j.tsep.2021.101049
27.
Gasia
,
J.
,
Maldonado
,
J. M.
,
Galati
,
F.
,
Simone
,
M. D.
, and
Cabeza
,
L. F.
,
2019
, “
Experimental Evaluation of the Use of Fins and Metal Wool as Heat Transfer Enhancement Techniques in a Latent Heat Thermal Energy Storage System
,”
Energy Convers. Manage.
,
184
, pp.
530
538
.10.1016/j.enconman.2019.01.085
28.
Yang
,
X.
,
Xu
,
F.
,
Wang
,
X.
,
Guo
,
J.
, and
Li
,
M.-J.
,
2023
, “
Solidification in a Shell-and-Tube Thermal Energy Storage Unit Filled With Longitude Fins and Metal Foam: A Numerical Study
,”
Energy Built Environ.
,
4
(
1
), pp.
64
73
.10.1016/j.enbenv.2021.08.002
29.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
30.
Shamsundar
,
N.
, and
Srinivasan
,
R.
,
1980
, “
Effectiveness-NTU Charts for Heat Recovery From Latent Heat Storage Units
,”
ASME J. Sol. Energy Eng.
,
102
(
4
), pp.
263
271
.10.1115/1.3266190
31.
Tay
,
N. H. S.
,
Belusko
,
M.
, and
Bruno
,
F.
,
2012
, “
An Effectiveness-NTU Technique for Characterising Tube-in-Tank Phase Change Thermal Energy Storage Systems
,”
Appl. Energy
,
91
(
1
), pp.
309
319
.10.1016/j.apenergy.2011.09.039
32.
Helmns
,
A.
, and
Carey
,
V. P.
,
2018
, “
Multiscale Transient Modeling of Latent Energy Storage for Asynchronous Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051004
.10.1115/1.4039460
33.
NSCO
,
2022
, “
Nevada's Climate; Nevada State Climate Office, University of Nevada, College of Agriculture, Biotechnology and Natural Resources
,” University of Nevada, Reno, NV, accessed Aug. 10,
2022
, https://extension.unr.edu/climate/?page_id=112
34.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer
, 8th ed.,
Cengage Learning
,
Boston, MA
.
35.
Kannan
,
S.
, and
Manglik
,
R. M.
,
2023
, “
Design and Testing of Phase Change Material Based Thermal Energy Storage System for Improved Power Plant Cooling
,”
University of Cincinnati
,
Cincinnati, OH
, Report No. TFTPL-28.
36.
Plank
,
R.
,
1932
, “
Über Die Gefrierzeit Von Eis Und Wasserhaltigen Lebensmitteln
,”
Z. Ges. Kälteind.
,
39
(
4
), pp.
56
58
.
37.
Taler
,
J.
, and
Duda
,
P.
,
2006
,
Solving Direct and Inverse Heat Conduction Problems
,
Springer-Verlag
,
Berlin, Germany
.
You do not currently have access to this content.