Abstract

During plasma spraying, interaction between splats and surface microsized features can be critical to the splat dynamic progress and consequently to the coating microstructural development and interfacial bonding. The transient spreading of molten alumina impacting a flat substrate exhibiting micro-obstructions, commonly produced during surface machining, grinding and/or even polishing, is numerically investigated using a three-dimensional model comprising of splat solidification and shrinkage developments. Single isolated splats are also experimentally characterized using top surface scanning electron microscope analysis. Droplets impacting directly onto a microsized surface protuberance show no signs of premature splashing behavior. The microscopic features (<2.5 μm) are not able to generate flow instabilities to initially affect the splat inherent overall spreading. However, subsequent splat peripheral contact with target surface micro-obstructions, characterized by peak and valley features, induces peripheral lift, waviness, and instability. It follows that the ejected destabilized material shears/fractures during stretching triggering the formation of splash fingers. Solidification plays a major role in detracting the role of surface micro-obstructions, i.e., surface roughness, in splashing phenomena.

References

1.
Fauchais
,
P.
,
Montavon
,
G.
, and
Bertrand
,
G.
,
2010
, “
From Powders to Thermally Sprayed Coatings
,”
J. Therm. Spray Technol.
,
19
(
1–2
), pp.
56
80
.10.1007/s11666-009-9435-x
2.
Gärtner
,
F.
,
Stoltenhoff
,
T.
,
Voyer
,
J.
,
Kreye
,
H.
,
Riekehr
,
S.
, and
Koçak
,
M.
,
2006
, “
Mechanical Properties of Cold-Sprayed and Thermally Sprayed Copper Coatings
,”
Surf. Coat. Technol.
,
200
(
24
), pp.
6770
6782
.10.1016/j.surfcoat.2005.10.007
3.
Mauer
,
G.
,
Vaßen
,
R.
, and
Stöver
,
D.
,
2011
, “
Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications
,”
J. Therm. Spray Technol.
,
20
(
3
), pp.
391
406
.10.1007/s11666-010-9603-z
4.
Makhlouf
,
A. S. H.
,
2011
, “
Current and Advanced Coating Technologies for Industrial Applications
,”
Nanocoatings and Ultra-Thin Films
,
Woodhead Publishing
, Cambridge, UK, pp.
3
23
.
5.
Chandra
,
S.
, and
Fauchais
,
P.
,
2009
, “
Formation of Solid Splats During Thermal Spray Deposition
,”
J. Therm. Spray Technol.
,
18
(
2
), pp.
148
180
.10.1007/s11666-009-9294-5
6.
Goel
,
S.
,
Faisal
,
N. H.
,
Ratia
,
V.
,
Agrawal
,
A.
, and
Stukowski
,
A.
,
2014
, “
Atomistic Investigation on the Structure–Property Relationship During Thermal Spray Nanoparticle Impact
,”
Comput. Mater. Sci.
,
84
, pp.
163
174
.10.1016/J.COMMATSCI.2013.12.011
7.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
8.
Subedi
,
K. K.
,
Lee
,
J.
,
Hsu
,
M.-C.
, and
Ward
,
T.
,
2022
, “
Particle-Based Approach to Model Fuel Droplet Impact and Thermal Spray Coating Processes
,”
Doctoral thesis
,
Iowa State University
,
Ames, IA
.https://dr.lib.iastate.edu/server/api/core/bitstreams/db712e78-f04f-4037-8528-46bad96f71a3/content
9.
Escure
,
C.
,
Vardelle
,
M.
, and
Fauchais
,
P.
,
2003
, “
Experimental and Theoretical Study of the Impact of Alumina Droplets on Cold and Hot Substrates
,”
Plasma Chem. Plasma Process.
,
23
(
2
), pp.
185
221
.10.1023/A:1022976914185
10.
Fukumoto
,
M.
,
Nishioka
,
E.
, and
Nishiyama
,
T.
,
2002
, “
New Criterion for Splashing in Flattening of Thermal Sprayed Particles Onto Flat Substrate Surface
,”
Surf. Coat. Technol.
,
161
(
2–3
), pp.
103
110
.10.1016/S0257-8972(02)00471-1
11.
Fukumoto
,
M.
,
Yamaguchi
,
T.
,
Yamada
,
M.
, and
Yasui
,
T.
,
2007
, “
Splash Splat to Disk Splat Transition Behavior in Plasma-Sprayed Metallic Materials
,”
J. Therm. Spray Technol.
,
16
(
5–6
), pp.
905
912
.10.1007/s11666-007-9083-y
12.
Rajendran
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2023
, “
Predicting the Splash of a Drop Impacting a Thin Liquid Film
,”
Langmuir
,
39
(
41
), pp.
14764
14773
.10.1021/acs.langmuir.3c02185
13.
Vander Wal
,
R. L.
,
Berger
,
G. M.
, and
Mozes
,
S. D.
,
2006
, “
The Splash/Non-Splash Boundary Upon a Dry Surface and Thin Fluid Film
,”
Exp. Fluids
,
40
(
1
), pp.
53
59
.10.1007/S00348-005-0045-1/FIGURES/2
14.
Wang
,
A. B.
, and
Chen
,
C. C.
,
2000
, “
Splashing Impact of a Single Drop Onto Very Thin Liquid Films
,”
Phys. Fluids
,
12
(
9
), pp.
2155
2158
.10.1063/1.1287511
15.
Krechetnikov
,
R.
, and
Homsy
,
G. M.
,
2009
, “
Crown-Forming Instability Phenomena in the Drop Splash Problem
,”
J. Colloid Interface Sci.
,
331
(
2
), pp.
555
559
.10.1016/j.jcis.2008.11.079
16.
Hill
,
D. L.
, and
Abarzhi
,
S. I.
,
2022
, “
On Rayleigh-Taylor and Richtmyer-Meshkov Dynamics With Inverse-Quadratic Power-Law Acceleration
,”
Front. Appl. Math. Stat.
,
7
, p.
735526
.10.3389/fams.2021.735526
17.
Zhou
,
Y.
,
Williams
,
R. J. R.
,
Ramaprabhu
,
P.
,
Groom
,
M.
,
Thornber
,
B.
,
Hillier
,
A.
,
Mostert
,
W.
,
Rollin
,
B.
,
Balachandar
,
S.
,
Powell
,
P. D.
,
Mahalov
,
A.
, and
Attal
,
N.
,
2021
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instabilities: A Journey Through Scales
,”
Phys. D
,
423
, p.
132838
.10.1016/j.physd.2020.132838
18.
Allen
,
R. F.
,
1975
, “
The Role of Surface Tension in Splashing
,”
JCIS
,
51
(
2
), pp.
350
351
.10.1016/0021-9797(75)90126-5
19.
Thoroddsen
,
S. T.
, and
Sakakibara
,
J.
,
1998
, “
Evolution of the Fingering Pattern of an Impacting Drop
,”
Phys. Fluids
,
10
(
6
), pp.
1359
1374
.10.1063/1.869661
20.
Kim
,
H. Y.
,
Feng
,
Z. C.
, and
Chun
,
J. H.
,
2000
, “
Instability of a Liquid Jet Emerging From a Droplet Upon Collision With a Solid Surface
,”
Phys. Fluids
,
12
(
3
), pp.
531
541
.10.1063/1.870259
21.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.10.1016/0301-9322(94)00069-V
22.
Tillmann
,
W.
,
Khalil
,
O.
, and
Baumann
,
I.
,
2021
, “
Influence of Direct Splat-Affecting Parameters on the Splat-Type Distribution, Porosity, and Density of Segmentation Cracks in Plasma-Sprayed YSZ Coatings
,”
J. Therm. Spray Technol.
,
30
(
4
), pp.
1015
1027
.10.1007/s11666-021-01180-4
23.
Aziz
,
S. D.
, and
Chandra
,
S.
,
2000
, “
Impact, Recoil and Splashing of Molten Metal Droplets
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2841
2857
.10.1016/S0017-9310(99)00350-6
24.
Mostaghimi
,
J.
,
Pasandideh-Fard
,
M.
, and
Chandra
,
S.
,
2002
, “
Dynamics of Splat Formation in Plasma Spray Coating Process
,”
Plasma Chem. Plasma Process.
,
22
(
1
), pp.
59
84
.10.1023/A:1012940515065
25.
Fukumoto
,
M.
,
Nishioka
,
E.
, and
Matsubara
,
T.
,
1999
, “
Flattening and Solidification Behavior of a Metal Droplet on a Flat Substrate Surface Held at Various Temperatures
,”
Surf. Coat. Technol.
,
120–121
, pp.
131
137
.10.1016/S0257-8972(99)00349-7
26.
Wan
,
Y. P.
,
Prasad
,
V.
,
Wang
,
G.-X.
,
Sampath
,
S.
, and
Fincke
,
J. R.
,
1999
, “
Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
3
), pp.
691
699
.10.1115/1.2826034
27.
Xavier
,
T.
,
Zuzio
,
D.
,
Averseng
,
M.
, and
Estivalezes
,
J. L.
,
2020
, “
Toward Direct Numerical Simulation of High Speed Droplet Impact
,”
Meccanica
,
55
(
2
), pp.
387
401
.10.1007/s11012-019-00980-x
28.
Ray
,
B.
,
Biswas
,
G.
, and
Sharma
,
A.
,
2015
, “
Regimes During Liquid Drop Impact on a Liquid Pool
,”
J. Fluid Mech.
,
768
, pp.
492
523
.10.1017/jfm.2015.108
29.
Farvardin
,
E.
, and
Dolatabadi
,
A.
,
2013
, “
Numerical Simulation of the Breakup of Elliptical Liquid Jet in Still Air
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071302
.10.1115/1.4024081
30.
Rajendran
,
S.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2023
, “
New Property Averaging Scheme for Volume of Fluid Method for Two-Phase Flows With Large Viscosity Ratios
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061101
.10.1115/1.4053548
31.
Borrell
,
R.
,
Jofre
,
L.
,
Lehmkuhl
,
O.
, and
Castro
,
J.
,
2013
, “
Parallelization Strategy for the Volume-of-Fluid Method on Unstructured Meshes
,”
Procedia Eng.
,
61
, pp.
198
203
.10.1016/j.proeng.2013.08.003
32.
Alavi
,
S.
, and
Passandideh-Fard
,
M.
,
2011
, “
Numerical Simulation of Droplet Impact and Solidification Including Thermal Shrinkage in a Thermal Spray Process
,”
ASME
Paper No. IHTC14-22583.10.1115/IHTC14-22583
33.
Pasandideh-Fard
,
M.
, and
Mostaghimi
,
J.
,
1996
, “
Droplet Impact and Solidification in a Thermal Spray Process: Droplet-Substrate Interactions
,”
Thermal Spray 1996: Proceedings From the National Thermal Spray Conference
,
Cincinnati, OH
,
Oct. 7–11
, pp.
637
646
.10.31399/asm.cp.itsc1996p0637
34.
Zhang
,
Y.
,
Matthews
,
S.
,
Tran
,
A. T. T.
, and
Hyland
,
M.
,
2016
, “
Effects of Interfacial Heat Transfer, Surface Tension and Contact Angle on the Formation of Plasma-Sprayed Droplets Through Simulation Study
,”
Surf. Coat. Technol.
,
307
, pp.
807
816
.10.1016/j.surfcoat.2016.09.066
35.
Zhang
,
H.
,
Wang
,
X. Y.
,
Zheng
,
L. L.
, and
Jiang
,
X. Y.
,
2001
, “
Studies of Splat Morphology and Rapid Solidification During Thermal Spraying
,”
Int. J. Heat Mass Transfer
,
44
(
24
), pp.
4579
4592
.10.1016/S0017-9310(01)00109-0
36.
Kamnis
,
S.
, and
Gu
,
S.
,
2005
, “
Numerical Modelling of Droplet Impingement
,”
J. Phys. D: Appl. Phys.
,
38
(
19
), pp.
3664
3673
.10.1088/0022-3727/38/19/015
37.
Bobzin
,
K.
,
Wietheger
,
W.
,
Heinemann
,
H.
, and
Wolf
,
F.
,
2021
, “
Simulation of Thermally Sprayed Coating Properties Considering the Splat Boundaries
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1147
(
1
), p.
012026
.10.1088/1757-899X/1147/1/012026
38.
Jeske
,
S. R.
,
Bender
,
J.
,
Bobzin
,
K.
,
Heinemann
,
H.
,
Jasutyn
,
K.
,
Simon
,
M.
,
Mokrov
,
O.
,
Sharma
,
R.
, and
Reisgen
,
U.
,
2022
, “
Application and Benchmark of SPH for Modeling the Impact in Thermal Spraying
,”
Comput. Part. Mech.
,
9
(
6
), pp.
1137
1152
.10.1007/s40571-022-00459-9
39.
Pasandideh-Fard
,
M.
,
Pershin
,
V.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
Splat Shapes in a Thermal Spray Coating Process: Simulations and Experiments
,”
J. Therm. Spray Technol.
,
11
(
2
), pp.
206
217
.10.1361/105996302770348862
40.
Raessi
,
M.
,
Mostaghimi
,
J.
, and
Bussmann
,
M.
,
2006
, “
Effect of Surface Roughness on Splat Shapes in the Plasma Spray Coating Process
,”
Thin Solid Films
,
506–507
, pp.
133
135
.10.1016/j.tsf.2005.08.140
41.
Ivosevic
,
M.
,
Gupta
,
V.
,
Baldoni
,
J. A.
,
Cairncross
,
R. A.
,
Twardowski
,
T. E.
, and
Knight
,
R.
,
2006
, “
Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles: Modeling and Experiments
,”
J. Therm. Spray Technol.
,
15
(
4
), pp.
725
730
.10.1361/105996306X146839
42.
Sobolev
,
V. V.
,
Guilemany
,
J. M.
, and
Martin
,
A. J.
,
1996
, “
Influence of Surface Roughness on the Flattening of Powder Particles During Thermal Spraying
,”
J. Therm. Spray Technol.
,
5
(
2
), pp.
207
214
.
43.
Oukach
,
S.
,
Pateyron
,
B.
,
Hamdi
,
H.
, and
Ganaoui
,
M. E.
,
2012
, “
Effect of Thermal Contact Resistance on Alumina Molten Particle Impacting Onto a Metal Substrate
,”
Defect and Diffusion Forum
, Vol. 326–328, Trans Tech Publications, Ltd., pp.
482
487
.10.4028/www.scientific.net/DDF.326-328.482
44.
Dhiman
,
R.
,
McDonald
,
A. G.
, and
Chandra
,
S.
,
2007
, “
Predicting Splat Morphology in a Thermal Spray Process
,”
Surf. Coat. Technol.
,
201
(
18
), pp.
7789
7801
.10.1016/j.surfcoat.2007.03.010
45.
Keshri
,
A. K.
, and
Agarwal
,
A.
,
2011
, “
Splat Morphology of Plasma Sprayed Aluminum Oxide Reinforced With Carbon Nanotubes: A Comparison Between Experiments and Simulation
,”
Surf. Coat. Technol.
,
206
(
2–3
), pp.
338
347
.10.1016/j.surfcoat.2011.07.025
46.
Pasandideh-Fard
,
M.
, and
Mostaghimi
,
J.
,
1995
, “
On the Spreading and Solidification of Molten Particles in a Plasma Spray Process Effect of Thermal Contact Resistance
,”
Plasma Chem. Plasma Process.
,
16
(
S1
), pp.
S83
S98
.10.1007/BF01512629
47.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242
.10.1016/S0017-9310(01)00336-2
48.
Zhang
,
Y.
,
Matthews
,
S.
,
Wu
,
D.
, and
Zou
,
Y.
,
2022
, “
Interactions Between Successive High-Velocity Impact Droplets During Plasma Spraying
,”
Surf. Coat. Technol.
,
431
, p.
128006
.10.1016/j.surfcoat.2021.128006
49.
Stow
,
C. D.
, and
Hadfield
,
M. G.
,
1981
, “
An Experimental Investigation of Fluid Flow Resulting From the Impact of a Water Drop With an Unyielding Dry Surface
,”
Proc. R. Soc. London, Ser. A
,
373
(
1755
), pp.
419
441
.10.1098/RSPA.1981.0002
50.
De Ruiter
,
J.
,
Soto
,
D.
, and
Varanasi
,
K. K.
,
2017
, “
Self-Peeling of Impacting Droplets
,”
Nat. Phys.
,
14
(
1
), pp.
35
39
.10.1038/nphys4252
51.
Gielen
,
M. V.
,
De Ruiter
,
R.
,
Koldeweij
,
R. B. J.
,
Lohse
,
D.
,
Snoeijer
,
J. H.
, and
Gelderblom
,
H.
,
2019
, “
Solidification of Liquid Metal Drops During Impact
,”
J. Fluid Mech.
,
883
, p.
32
.10.1017/jfm.2019.886
You do not currently have access to this content.