Abstract

An experimental investigation of heat transfer performance in a rectangular impingement channel featuring staggered strip-fins was completed. Four configurations were considered to study the effects of varying the strip-fin height (H/d = 1.5 and 2.75) at two jet-to-target surface spacings (z/d = 3 and 6) on the heat transfer, pressure loss, and crossflow magnitude for a long impingement channel with in-line, 4 × 12 impinging jets. Also, the effect of the reference temperature choice, either jet inlet temperature or local bulk temperature, for calculating the local heat transfer coefficients was considered. The regionally averaged heat transfer coefficients were measured at seven Reynolds numbers, based on the jet diameter (10k–70k) utilizing the copper plate experimental method. The empirical correlations were expressed for the area averaged Nusselt number estimation of impingement channels with strip-fin or pin-fin roughness elements. The results showed that the long strip-fin channel with z/d = 3 provided the best thermal performance. The discharge coefficients are similar for all configurations between Rejet = 10k and 50k. The results are compared with the impingement channels with conventional pin-fins. They show that strip-fin channels provide lower pressure drop with marginally better heat transfer coefficients compared to the conventional pin-fin channels. However, when the channel weight is considered, strip-fins would increase the roughness material volume more than the conventional pin-fins.

References

1.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Mass Transfer Trans. ASME
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
2.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.,
1996, , “
Detailed Heat Transfer Coefficient Distributions Under an Array of Inclined Impinging Jets Using a Transient Liquid Crystal Technique
,” 9th International Symposium on Transport Phenomena in Thermal Fluids Engineering (
ISTP-9
), Singapore, June, pp.
807
812
.
3.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
12
), p.
122202
.10.1115/1.4034180
4.
Jordan
,
C. N.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Effect of Impingement Supply Condition on Leading Edge Heat Transfer With Rounded Impinging Jets
,” Proceedings of 2012 ASME Summer Heat Transfer Conference,
ASME
Paper No. HT2012-58410.10.1115/HT2012-58410
5.
Jordan
,
C. N.
,
Elston
,
C. A.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2013
, “
Leading Edge Impingement With Racetrack-Shaped Jets and Varying Inlet Supply Conditions
,” Turbo Expo: Power for Land, Sea, and Air,
ASME
Paper No. GT2013-9461110.1115/GT2013-94611
6.
Carcasci
,
C.
,
Tarchi
,
B.
, and
Ohlendorf
,
N.
,
2014
, “
Experimental Investigation of a Leading-Edge Cooling System With Optimized Inclined Racetrack Holes
,”
ASME
Paper No. GT2014-26219. 10.1115/GT2014-26219
7.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient Effects for Jet Array Impingement With Initial Crossflow
,”
ASME J. Eng. Power
,
105
(
2
), pp.
296
304
.10.1115/1.3227415
8.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.10.2514/2.6304
9.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press, Taylor and Francis
,
New York
.
10.
Trabold
,
T.
, and
Obot
,
N.
,
1987
, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part II – Effects of Crossflow in the Presence of Roughness Elements
,”
ASME J. Turbomach.
,
109
(
4
), pp.
594
601
.10.1115/1.3262153
11.
Haiping
,
C.
,
Dalin
,
Z.
, and
Taiping
,
H.
,
1997
, “
Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the Jet Hole to the Ribs
,” The 1997 International Gas Turbine and Aeroengine Congress and Exposition,
ASME
Paper No. 97-GT-331.10.1115/97-GT-331
12.
Rallabandi
,
A. P.
,
Rhee
,
D. H.
,
Gao
,
Z.
, and
Han
,
J. C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4663
4671
.10.1016/j.ijheatmasstransfer.2010.06.027
13.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2004
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME. J. Turbomach.
,
127
(
3
), pp.
532
544
.10.1115/1.1861918
14.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R.
,
2005
, “
Parametric Effects on Heat Transfer of Impingement on Dimpled Surface
,”
ASME J. Turbomach.
,
127
(
2
), pp.
287
296
.10.1115/1.1791292
15.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.10.2514/2.6530
16.
Azad
,
G. M.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2002
, “
Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique
,”
Int. J. Rotating Mach.
,
8
(
3
), pp.
161
173
.10.1155/S1023621X02000155
17.
Mhetras
,
S.
,
Han
,
J. C.
, and
Huth
,
M.
,
2014
, “
Impingement Heat Transfer From Jet Arrays on Turbulent Target Walls at Large Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021003
.10.1115/1.4025665
18.
Rao
,
Y.
,
2018
, “
Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
7
), p. 072201.10.1115/1.4039015
19.
Buzzard
,
W.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2017
, “
Influences of Target Surface Small-Scale Rectangle Roughness on Impingement Jet Array Heat Transfer
,”
Int. J. Heat Mass Transfer
,
110
, pp.
805
816
.10.1016/j.ijheatmasstransfer.2017.03.061
20.
Alzahrani
,
Y. S.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2022
, “
Effects of Jet-to-Target Surface Spacing and Pin-Fin Height on Jet Impingement Heat Transfer in a Rectangular Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), pp.
031003
031012
.10.1115/1.4056250
21.
Nuntakulamarat
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2020
, “
Heat Transfer and Pressure Drop Measurements in a High Aspect Ratio Channel With Circular Pins and Strip Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), pp.
031019
031028
.10.1115/1.4045221
22.
Sahin
,
I.
,
Chen
,
I. L.
,
Wright
,
L. M.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Heat Transfer in Rotating, Trailing Edge, Converging Channels With Full- and Partial-Height Strip-Fins
,”
ASME J. Turbomach.
,
144
(
9
), pp.
091009
091020
.10.1115/1.4053492
23.
Tracy
,
N. J.
,
Wright
,
L. M.
, and
Han
,
J. C.
,
2022
, “
Thermal Performance of Double-Sided, Partial Height Strip Fin Arrays in a High Aspect Ratio, Rectangular Channel
,”
ASME J. Turbomach.
,
144
(
11
), pp.
111006
111016
.10.1115/1.4054544
24.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
25.
Han
,
J. C.
, and
Wright
,
L. M.
,
2020
,
Experimental Methods in Heat Transfer and Fluid Mechanics
,
CRC Press
, Boca Raton, FL.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
You do not currently have access to this content.