Abstract

This article presents a comprehensive numerical analysis of the effects of cooling a cylinder using an eccentric slot jet impingement cooling (SJIC). The study focuses on examining the thermal and fluid behavior when the slot jet is offcenter, during impingement cooling. Several turbulence models from the k–ε and k–ω families were compared by evaluating the local Nusselt number profiles at different locations around the cylinder, and these results were compared to experimental data. The findings indicate that the SST k–ω model outperforms the other turbulence models in estimating the Nusselt number in the stagnation region, while the standard k–ω model shows improved performance elsewhere on the cylinder. Furthermore, this study reveals a decrease in the maximum local Nusselt number and a shift in the direction of the nozzle displacement. The presence of swirling/recirculating fluid at the trailing end of the cylinder enhances heat transfer near the back end of the cylinder. The separation and the reattachment of the fluid stream differ depending on the Reynolds number, with low Reynolds numbers resulting in reattachment on the side of the slot jet and higher Reynolds numbers leading to reattachment in the opposite direction. Additionally, the length of the recirculation and swirling zones increases as the nozzle-to-cylinder spacing (H/S) increases. However, as the eccentricity (E/S) increases, the size of the swirl circulation zones decreases and completely vanishes for E/S = 4. This study provides valuable insights for optimal cooling design.

References

1.
Hrycak
,
P.
,
1981
,
Heat Transfer From Impinging Jets. A Literature Review
,
Flight Dynamics Laboratory
, p.
71
.10.21236/ADA106723
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.10.1016/0142-727X(92)90017-4
3.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
(
C
), pp.
1
60
.10.1016/S0065-2717(08)70221-1
4.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
5.
Chauhan
,
V. K. S.
, and
Singh
,
D.
,
2019
, “
Experimental Study of Mist Jet Impingement Cooling
,”
J. Enhanc. Heat Transfer
,
26
(
5
), pp.
451
470
.10.1615/JEnhHeatTransf.2019030135
6.
Chauhan
,
V. K. S.
, and
Singh
,
D.
,
2019
, “
Numerical Study of Air-Atomized Water Mist Cooling of a Heated Flat Plate
,”
J. Enhanc. Heat Transfer
,
26
(
5
), pp.
528
531
.10.1615/HeatTransRes.2019026068
7.
Gori
,
F.
, and
Bossi
,
L.
,
2000
, “
On the Cooling Effect of an Air Jet Along the Surface of a Cylinder
,”
Int. Commun. Heat Mass Transfer
,
27
(
5
), pp.
667
676
.10.1016/S0735-1933(00)00148-2
8.
Gori
,
F.
, and
Bossi
,
L.
,
2003
, “
Optimal Slot Height in the Jet Cooling of a Circular Cylinder
,”
Appl. Therm. Eng.
,
23
(
7
), pp.
859
870
.10.1016/S1359-4311(03)00025-5
9.
Gori
,
F.
, and
Petracci
,
I.
,
2013
, “
On the Effect of the Slot Height in the Cooling of a Circular Cylinder With a Rectangular Jet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
8
14
.10.1016/j.icheatmasstransfer.2013.08.018
10.
McDaniel
,
C. S.
, and
Webb
,
B. W.
,
2000
, “
Slot Jet Impingement Heat Transfer From Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
43
(
11
), pp.
1975
1985
.10.1016/S0017-9310(99)00267-7
11.
Brahma
,
R. K.
,
Faruque
,
O.
, and
Arora
,
R. C.
,
1991
, “
Experimental Investigation of Mean Flow Characteristics of Slot Jet Impingement on a Cylinder
,”
Wärme- Und Stoffübertragung
,
26
(
5
), pp.
257
263
.10.1007/BF01589996
12.
Olsson
,
E. E. M.
,
Ahrné
,
L. M.
, and
Trägårdh
,
A. C.
,
2004
, “
Heat Transfer From a Slot Air Jet Impinging on a Circular Cylinder
,”
J. Food Eng.
,
63
(
4
), pp.
393
401
.10.1016/j.jfoodeng.2003.08.009
13.
Singh
,
S. K.
, and
Singh
,
R. P.
,
2008
, “
Air Impingement Cooling of Cylindrical Objects Using Slot Jets
,”
Food Engineering: Integrated Approaches (Food Engineering Series)
,
G. F.
Gutiérrez-López
,
G. V.
Barbosa-Cánovas
,
J.
Welti-Chanes
, and
E.
Parada-Arias
, eds.,
Springer
,
New York
.10.1007/978-0-387-75430-7_5
14.
Pachpute
,
S.
, and
Premachandran
,
B.
,
2017
, “
Experimental and Numerical Investigations of Slot Jet Impingement With and Without a Semi-Circular Bottom Confinement
,”
Int. J. Heat Mass Transfer
,
114
, pp.
866
890
.10.1016/j.ijheatmasstransfer.2017.06.110
15.
Ganatra
,
K. A.
, and
Singh
,
D.
,
2020
, “
Numerical Investigation of Effect of Semi-Circular Confinement Bottom Opening Angle for Slot Jet Impingement Cooling on Heated Cylinder
,”
Int. J. Therm. Sci.
,
149
(
December 2019
), p.
106148
.10.1016/j.ijthermalsci.2019.106148
16.
Sparrow
,
E. M.
,
Altemani
,
C. A. C.
, and
Chaboki
,
A.
,
1984
, “
Jet-Impingement Heat Transfer for a Circular Jet Impinging in Crossflow on a Cylinder
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
106
(
3
), pp.
570
577
.10.1115/1.3246717
17.
Tawfek
,
A. A.
,
1999
, “
Heat Transfer Due to a Round Jet Impinging Normal to a Circular Cylinder
,”
Warme- Und Stoffubertragung Z.
,
35
(
4
), pp.
327
333
.10.1007/s002310050332
18.
Singh
,
D.
,
Premachandran
,
B.
, and
Kohli
,
S.
,
2013
, “
Experimental and Numerical Investigation of Jet Impingement Cooling of a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
60
(
1
), pp.
672
688
.10.1016/j.ijheatmasstransfer.2013.01.008
19.
Wang
,
Q.
,
Jiang
,
B.
,
Xue
,
Q. F.
,
Sun
,
H. L.
,
Li
,
B.
,
Zou
,
H. M.
, and
Yan
,
Y. Y.
,
2014
, “
Experimental Investigation on EV Battery Cooling and Heating by Heat Pipes
,”
Appl. Therm. Eng.
,
88
, pp.
54
60
.10.1016/j.applthermaleng.2014.09.083
20.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
21.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.10.1007/BF01061452
22.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
23.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
24.
Patankar
,
S. V.
,
2015
,
Numerical heat transfer and fluid flow.
,
Taylor & Francis
.
25.
Dumas
,
A.
,
Subhash
,
M.
,
Trancossi
,
M.
, and
Marques
,
J. P.
,
2014
, “
The Influence of Surface Temperature on Coanda Effect
,”
Energy Procedia
,
45
, pp.
626
634
.10.1016/j.egypro.2014.01.067
You do not currently have access to this content.