Abstract

The purpose of our study is to evaluate the surface temperature distribution on a radiant floor, particularly focusing on space cooling operations, to assess the presence of nonuniformities. In fact, knowing the temperature difference between the average superficial temperature and the coldest spot can be a useful indication for condensation prevention. Primarily, we performed an experimental campaign in test rooms using temperature sensors and liquid crystal thermography. This allowed us to evaluate the floor temperature distribution both on a local scale, influenced by the discontinuous presence of buried water pipes, and on a macroscale, influenced by internal use, objects, and boundary conditions of the surrounding space. Then, the experimental temperature field on the radiant floor surface has been compared with analytical and numerical models in steady-state and transient phases, respectively. The results indicate limited superficial temperature variations that become more significant at larger tube spacings and under transient conditions. In particular, the numerical transient analysis showed that shortly after a step change in the pipe's temperature boundary condition, a larger variation is locally observable on the floor, which then decays to the new steady-state conditions, presenting more uniformity. However, local effects are generally overshadowed by macro-effects, especially for practical scenarios where many objects, furnishings, and different boundary conditions are present. Finally, as a conservative guideline for the cooling system control, we recommend maintaining the average superficial floor temperature at least 1 °C above the dew point, to account for the described nonuniformities.

References

1.
Hassan
,
M. A.
, and
Abdelaziz
,
O.
,
2020
, “
Best Practices and Recent Advances in Hydronic Radiant Cooling Systems – Part II: Simulation, Control, and Integration
,”
Energy Build.
,
224
, p.
110263
.10.1016/j.enbuild.2020.110263
2.
Bizzarri
,
M.
,
Conti
,
P.
,
Glicksman
,
L. R.
,
Schito
,
E.
, and
Testi
,
D.
,
2023
, “
Radiant Floor Cooling Systems: A Critical Review of Modeling Methods
,”
Energies
,
16
(
17
), p.
6160
.10.3390/en16176160
3.
Weber
,
T.
, and
Jóhannesson
,
G.
,
2005
, “
An Optimized RC-Network for Thermally Activated Building Components
,”
Build Environ.
,
40
(
1
), pp.
1
14
.10.1016/j.buildenv.2004.04.012
4.
Jin
,
X.
,
Zhang
,
X.
, and
Luo
,
Y.
,
2010
, “
A Calculation Method for the Floor Surface Temperature in Radiant Floor System
,”
Energy Build.
,
42
(
10
), pp.
1753
1758
.10.1016/j.enbuild.2010.05.011
5.
Tian
,
Z.
,
Duan
,
B.
,
Niu
,
X.
,
Hu
,
Q.
, and
Niu
,
J.
,
2014
, “
Establishment and Experimental Validation of a Dynamic Heat Transfer Model for Concrete Radiant Cooling Slab Based on Reaction Coefficient Method
,”
Energy Build.
,
82
, pp.
330
340
.10.1016/j.enbuild.2014.07.031
6.
Zhang
,
D.
,
Cai
,
N.
, and
Wang
,
Z.
,
2013
, “
Experimental and Numerical Analysis of Lightweight Radiant Floor Heating System
,”
Energy Build.
,
61
, pp.
260
266
.10.1016/j.enbuild.2013.02.016
7.
Wang
,
X.
,
Lei
,
W.
,
Zhang
,
W.
,
Zhang
,
Y.
, and
Zhang
,
L.
,
2021
, “
Simplified Calculation and Control Method of Floor Surface Temperature for Radiant Floor and Fresh Air Coupled Cooling Systems in Steady-State
,”
Case Stud. Therm. Eng.
,
27
, p.
101320
.10.1016/j.csite.2021.101320
8.
Lu
,
L.
,
Chen
,
J.
,
Su
,
T.
,
Liu
,
X.
,
Hu
,
Y.
,
Luo
,
Q.
, and
Luo
,
L.
,
2022
, “
An RC-Network Model in the Frequency Domain for Radiant Floor Heating Coupled With Envelopes
,”
Build Environ.
,
225
, p.
109617
.10.1016/j.buildenv.2022.109617
9.
Liu
,
K.
,
Tian
,
Z.
,
Zhang
,
C.
,
Ding
,
Y.
, and
Wang
,
W.
,
2011
, “
Establishment and Validation of Modified Star-Type RC-Network Model for Concrete Core Cooling Slab
,”
Energy Build.
,
43
(
9
), pp.
2378
2384
.10.1016/j.enbuild.2011.05.029
10.
Larsen
,
S. F.
,
Filippín
,
C.
, and
Lesino
,
G.
,
2010
, “
Transient Simulation of a Storage Floor With a Heating/Cooling Parallel Pipe System
,”
Build Simul.
,
3
(
2
), pp.
105
115
.10.1007/s12273-010-0307-6
11.
Qing Li
,
Q.
,
Chen
,
C.
,
Zhang
,
Y.
,
Lin
,
J.
,
Shu Ling
,
H.
, and
Ma
,
Y.
,
2014
, “
Analytical Solution for Heat Transfer in a Multilayer Floor of a Radiant Floor System
,”
Build Simul.
,
7
(
3
), pp.
207
216
.10.1007/s12273-013-0152-5
12.
Li
,
Q.
,
Zhang
,
Y.
,
Guo
,
T.
, and
Fan
,
J.
,
2021
, “
Development of a New Method to Estimate Thermal Performance of Multilayer Radiant Floor
,”
J. Build. Eng.
,
33
, p.
101562
.10.1016/j.jobe.2020.101562
13.
Jin
,
X.
,
Zhang
,
X.
,
Luo
,
Y.
, and
Cao
,
R.
,
2010
, “
Numerical Simulation of Radiant Floor Cooling System: The Effects of Thermal Resistance of Pipe and Water Velocity on the Performance
,”
Build Environ.
,
45
(
11
), pp.
2545
2552
.10.1016/j.buildenv.2010.05.016
14.
Su
,
L.
,
Li
,
N.
,
Zhang
,
X.
,
Sun
,
Y.
, and
Qian
,
J.
,
2015
, “
Heat Transfer and Cooling Characteristics of Concrete Ceiling Radiant Cooling Panel
,”
Appl. Therm. Eng.
,
84
, pp.
170
179
.10.1016/j.applthermaleng.2015.03.045
15.
Radzai
,
M. H. M.
,
Yaw
,
C. T.
,
Lim
,
C. W.
,
Koh
,
S. P.
, and
Ahmad
,
N. A.
,
2021
, “
Numerical Analysis on the Performance of a Radiant Cooling Panel With Serpentine-Based Design
,”
Energies (Basel)
,
14
(
16
), p.
4744
.10.3390/en14164744
16.
De Carli
,
M.
,
Scarpa
,
M.
,
Tomasi
,
R.
, and
Zarrella
,
A.
,
2012
, “
DIGITHON: A Numerical Model for the Thermal Balance of Rooms Equipped With Radiant Systems
,”
Build Environ.
,
57
, pp.
126
144
.10.1016/j.buildenv.2012.04.016
17.
Glück
,
B.
, and
Windisch
,
K.
,
1982
,
Strahlungsheizung-Theorie Und Praxis: Mit e. Abschn. Wärmephysiologie.
Müller
,
Ulm, Germany
.
18.
Koschenz
,
M.
, and
Lehmann
,
B.
,
2000
, “Thermoaktive Bauteilsysteme Tabs,” EMPA Dübendorf, Dübendorf, Switzerland.
19.
Wang
,
T.
,
Liu
,
Y.
,
Wang
,
D.
, and
Gao
,
W.
,
2022
, “
Experimental Evaluation on Asymmetrical Thermal Sensation in Modular Radiant Heating System
,”
Build Environ.
,
222
, p.
109433
.10.1016/j.buildenv.2022.109433
21.
Dharmasastha
,
K.
,
Leo Samuel
,
D. G.
,
Shiva Nagendra
,
S. M.
, and
Maiya
,
M. P.
, Sep.
2022
, “
Thermal Comfort of a Radiant Cooling System in Glass Fiber Reinforced Gypsum Roof – An Experimental Study
,”
Appl. Therm. Eng.
,
214
, p.
118842
.10.1016/j.applthermaleng.2022.118842
22.
Jiang
,
T.
,
Zheng
,
C.
,
You
,
S.
,
Zhang
,
H.
,
Wu
,
Z.
,
Wang
,
Y.
, and
Wei
,
S.
, Aug.
2022
, “
Experimental and Numerical Study on the Heat Transfer Performance of the Radiant Floor Heating Condenser With Composite Phase Change Material
,”
Appl. Therm. Eng.
,
213
, p.
118749
.10.1016/j.applthermaleng.2022.118749
23.
Thomas
,
S.
,
Franck
,
P. Y.
, and
André
,
P.
,
2011
, “
Model Validation of a Dynamic Embedded Water Base Surface Heat Emitting System for Buildings
,”
Build Simul.
,
4
(
1
), pp.
41
48
.10.1007/s12273-011-0025-8
24.
Werner-Juszczuk
,
A. J.
,
2018
, “
Experimental and Numerical Investigation of Lightweight Floor Heating With Metallised Polyethylene Radiant Sheet
,”
Energy Build.
,
177
, pp.
23
32
.10.1016/j.enbuild.2018.08.011
25.
Guo
,
Y.
,
Wu
,
H.
,
Du
,
K.
,
Huang
,
G.
, and
Xu
,
X.
,
2023
, “
Experimental Study on Radiant Cooling With Double-Skin Infrared-Transparent Membranes
,”
Energy Build.
,
278
, p.
112654
.10.1016/j.enbuild.2022.112654
26.
Ning
,
B.
,
Chen
,
Y.
,
Liu
,
H.
, and
Zhang
,
S.
,
2016
, “
Cooling Capacity Improvement for a Radiant Ceiling Panel With Uniform Surface Temperature Distribution
,”
Build Environ.
,
102
, pp.
64
72
.10.1016/j.buildenv.2016.03.009
27.
Ye
,
L.
,
Ding
,
Y.
,
Zhou
,
C.
, and
Li
,
J.
,
2023
, “
Heat Exchange Pipe Spacing for Optimal Temperature Uniformity on Cold Radiant Ceiling Surfaces
,”
Energy Build.
,
282
, p.
112788
.10.1016/j.enbuild.2023.112788
28.
Cooper
,
T. E.
,
Field
,
R. J.
, and
Meyer
,
J. F.
,
1975
, “
Liquid Crystal Thermography and Its Application to the Study of Convective Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
97
(
3
), pp.
442
450
.10.1115/1.3450396
29.
Grassi
,
W.
,
Testi
,
D.
,
Della Vista
,
D.
, and
Torelli
,
G.
,
2007
, “
Calibration of a Sheet of Thermosensitive Liquid Crystals Viewed Non-Orthogonally
,”
Measurement
,
40
(
9–10
), pp.
898
903
.10.1016/j.measurement.2006.10.020
30.
Toriyama
,
K.
,
Tada
,
S.
,
Ichimiya
,
K.
,
Funatani
,
S.
, and
Kokui
,
D.
,
2023
, “
Surface Temperature Measurement Using Thermochromic Liquid Crystals and Ratiometric Analysis of Spectral Intensities of Scattered Light
,”
Heat Mass Transfer
,
59
(
6
), pp.
1049
1058
.10.1007/s00231-022-03310-2
31.
Abdullah
,
N.
,
Abu Talib
,
A. R.
,
Jaafar
,
A. A.
,
Mohd Salleh
,
M. A.
, and
Chong
,
W. T.
,
2010
, “
The Basics and Issues of Thermochromic Liquid Crystal Calibrations
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1089
1121
.10.1016/j.expthermflusci.2010.03.011
32.
Kylili
,
A.
,
Fokaides
,
P. A.
,
Christou
,
P.
, and
Kalogirou
,
S. A.
, Dec.
2014
, “
Infrared Thermography (IRT) Applications for Building Diagnostics: A Review
,”
Appl. Energy
,
134
, pp.
531
549
.10.1016/j.apenergy.2014.08.005
33.
International Organization for Standardization
,
2023
, “
ISO 6781-1,
” International Organization for Standardization, London, UK.
34.
Schito
,
E.
,
Testi
,
D.
, and
Grassi
,
W.
,
2016
, “
A Proposal for New Microclimate Indexes for the Evaluation of Indoor Air Quality in Museums
,”
Buildings
,
6
(
4
), p.
41
.10.3390/buildings6040041
35.
Smith
,
A. R.
,
1978
, “
Color Gamut Transform Pairs
,”
ACM Siggraph Comput. Graph.
,
12
(
3
), pp.
12
19
.10.1145/965139.807361
36.
Joint Committee for Guides in Metrology
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,”
Joint Committee for Guides in Metrology, JCGM 100:2008
, Bureau of Weights and Measures, Sèvres, France.https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf
37.
ASHRAE,
2020
,
Ashrae Handbook: Heating, Ventilating, and Air-Conditioning Systems and Equipment
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
.,
Atlanta, GA
.
38.
Camci
,
M.
,
Karakoyun
,
Y.
,
Acikgoz
,
O.
, and
Dalkilic
,
A. S.
, Jul.
2021
, “
A Comparative Study on Convective Heat Transfer in Indoor Applications
,”
Energy Build.
,
242
, p.
110985
.10.1016/j.enbuild.2021.110985
39.
Shinoda
,
J.
,
Kazanci
,
O. B.
,
Ichi Tanabe
,
S.
, and
Olesen
,
B. W.
, Jul.
2019
, “
A Review of the Surface Heat Transfer Coefficients of Radiant Heating and Cooling Systems
,”
Build Environ.
,
159
, p.
106156
.10.1016/j.buildenv.2019.05.034
40.
Olesen
,
B. W.
,
Michel
,
E.
,
Bonnefoi
,
F.
, and
Carli
,
M. D.
,
2000
, “
Heat Exchange Coefficient Between Floor Surface and Space by Floor Cooling—Theory or a Question of Definition
,” ASHRAE Trans.,
106
, pp.
684
984
.https://www.researchgate.net/publication/236523141_Heat_exchange_coefficient_between_floor_surface_and_space_by_floor_cooling_--_Theory_or_a_question_of_definition#:~:text=Total%20heat%20exchange%20coefficients%20(combined,K%2C%20respectively%20%5B3%5D.
41.
COMSOL Multiphysics®
v. 6.2. COMSOL AB, Stockholm,
Sweden
, accessed Feb. 16, 2024, www.comsol.com
42.
Ning
,
B.
,
Schiavon
,
S.
, and
Bauman
,
F. S.
,
2015
, “
A Classification Scheme for Radiant Systems Based on Thermal Time Constant
,”
Proceedings of the Ninth International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) and the Third International Conference on Building Energy and Environment (COBEE)
,
Tianjin, China
, July 12–15, Vol. 121.https://escholarship.org/content/qt1sx88662/qt1sx88662_noSplash_7cb8b6341aeb0a4ed81acbcb6c7dc1b7.pdf?t=nuobqv#:~:text=We%20found%20time%20constants%20of,%2C%20between%200.1%2D0.6%20h
You do not currently have access to this content.