Abstract

During the startup phase, oscillating heat pipes (OHPs) exhibit a transient process in which the working fluid moves erratically until a steady-state oscillatory flow is attained. Understanding the transient process is important to predict how long it takes an oscillating heat pipe to reach normal operation and realize its heat transfer potential after it is started. In this paper, we perform a theoretical study of the transient process of oscillating heat pipes. Based on a one-dimensional mathematical model, we obtain an analytic solution that allows us to predict transient process characteristics of oscillating motions in an oscillating heat pipe, as well as the impact that different design and operating parameters have on this transient process.

References

1.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,” U.S. Patent No. 521,902.
2.
Akachi
,
H.
,
1990
, “
Structure of Heat Pipe
,” U.S. Patent No. 4,921,041.
3.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
4.
Hisoda
,
M.
,
Nishio
,
S.
, and
Shirakashi
,
R.
,
1999
, “
Meandering Closed-Loop Heat-Transport Tube (Propagation Phenomena of Vapor Plug
,”
JSME Int. J., Ser. B
,
42
(
4
), pp.
737
744
.10.1299/jsmeb.42.737
5.
Nikolayev
,
V. S.
,
2021
, “
Physical Principles and State-of-the-Art of Modeling of the Pulsating Heat Pipe: A Review
,”
Appl. Therm. Eng.
,
195
, p.
117111
.10.1016/j.applthermaleng.2021.117111
6.
Mameli
,
M.
,
Besagni
,
G.
,
Bansal
,
P. K.
, and
Markides
,
C. N.
,
2022
, “
Innovations in Pulsating Heat Pipes: From Origins to Future Perspectives
,”
Appl. Therm. Eng.
,
203
, p.
117921
.10.1016/j.applthermaleng.2021.117921
7.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
8.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.10.1108/09615530210434304
9.
Zuo
,
Z. J.
, and
North
,
M. T.
,
2000
, “
Miniature High Heat Flux Heat Pipes for Cooling of Electronics
,”
Proc. of SEE. Conference, Hong Kong, Jan. 9–13
, pp.
573
579
.
10.
Dobson
,
R. T.
,
2004
, “
Theoretical and Experimental Modelling of an Open Oscillatory Heat Pipe Including Gravity
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
113
119
.10.1016/j.ijthermalsci.2003.05.003
11.
Ma
,
H. B.
,
Hanlon
,
M. A.
, and
Chen
,
C. L.
,
2006
, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
,
2
(
2
), pp.
171
179
.10.1007/s10404-005-0061-8
12.
Gürsel
,
G.
,
Frijns
,
A. J. H.
,
Homburg
,
F. G. A.
, and
van Steenhoven
,
A. A.
,
2015
, “
A Mass-Spring-Damper Model of a Pulsating Heat Pipe With a Non-Uniform and Asymmetric Filling
,”
Appl. Therm. Eng.
,
91
, pp.
80
90
.10.1016/j.applthermaleng.2015.06.014
13.
Mameli
,
M.
,
Marengo
,
M.
, and
Khandekar
,
S.
,
2012
, “
Towards Quantitative Validation of a Closed Loop Pulsating Heat Pipe Numerical Model
,”
Proceedings of 16th International Heat Pipe Conference
, Lyon, France, May
20
24
.
14.
Nikolayev
,
V. S.
,
2011
, “
A Dynamic Film Model of the Pulsating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
8
), p.
081504
.10.1115/1.4003759
15.
Rao
,
M.
,
Lefèvre
,
F.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2013
, “
Understanding Transport Mechanism of a Self-Sustained Thermally Driven Oscillating Two-Phase System in a Capillary Tube
,”
Int. J. Heat Mass Transfer
,
65
, pp.
451
459
.10.1016/j.ijheatmasstransfer.2013.05.067
You do not currently have access to this content.