Abstract

Artificial intelligence and machine learning systems, faster processors, miniaturized computational components, and supercomputer centers are accompanied by larger heat dissipation and the need for innovative cooling methods. In this work, a combined jet-in-crossflow cooling system is introduced and numerically investigated with an application in localized hotspot treatment. A validation study, a grid independence study, and an uncertainty analysis are conducted to ensure the accuracy of the obtained results. Both vertical and angled jet impingement at different jet locations are studied indicating the advantage of using a 45 deg angled jet placed upstream of the hotspot. In addition, the advantage of jet-in-crossflow in comparison with pure crossflow and pure jet impingement is studied. The results show that the angled jet-in-crossflow setup, in comparison with pure crossflow at the same overall mass flowrate, considerably reduces the temperature values at the heated surface, and decreases the temperature standard deviation by 65%, while lowering the required pumping power by 35%. In comparison with pure jet impingement at the same overall mass flowrate, the angled jet-in-crossflow method reduces the required pumping power by 87%, while local temperature and temperature standard deviation values are very comparable. Furthermore, the advantage of structured rib channels in cooling effectiveness is investigated for the jet-in-crossflow setup. Although the addition of a rib slightly increases the pressure drop, the employment of a proper rib size minimizes the increased pressure drop while considerably improving the cooling effectiveness and temperature uniformity.

References

1.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2013
, “
Hotspot Mitigating With Obliquely Finned Microchannel Heat Sink—An Experimental Study
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
8
), pp.
1332
1341
.10.1109/TCPMT.2013.2244164
2.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Brunschwiler
,
T.
,
Schlottig
,
G.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2015
, “
A Novel Method of Energy Efficient Hotspot-Targeted Embedded Liquid Cooling for Electronics: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
88
, pp.
684
694
.10.1016/j.ijheatmasstransfer.2015.04.047
3.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2017.10.015
4.
Wiedenheft
,
K. F.
,
Guo
,
H. A.
,
Qu
,
X.
,
Boreyko
,
J. B.
,
Liu
,
F.
,
Zhang
,
K.
,
Eid
,
F.
,
Choudhury
,
A.
,
Li
,
Z.
, and
Chen
,
C. H.
,
2017
, “
Hotspot Cooling With Jumping-Drop Vapor Chambers
,”
Appl. Phys. Lett.
,
110
(
14
), pp.
141601
1
141601-5
.10.1063/1.4979477
5.
Fitzgerald
,
J. A.
, and
Garimella
,
S. V.
,
1998
, “
A Study of the Flow Field of a Confined and Submerged Impinging Jet
,”
Int. J. Heat Mass Transfer
,
41
(
8–9
), pp.
1025
1034
.10.1016/S0017-9310(97)00205-6
6.
Kuraan
,
A. M.
,
Moldovan
,
S. I.
, and
Choo
,
K.
,
2017
, “
Heat Transfer and Hydrodynamics of Free Water Jet Impingement at Low Nozzle-to-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2211
2216
.10.1016/j.ijheatmasstransfer.2017.01.084
7.
Robinson
,
A. J.
, and
Schnitzler
,
E.
,
2007
, “
An Experimental Investigation of Free and Submerged Miniature Liquid Jet Array Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
1
13
.10.1016/j.expthermflusci.2006.12.006
8.
Husain
,
A.
,
Kim
,
S. M.
, and
Kim
,
K. Y.
,
2013
, “
Performance Analysis and Design Optimization of Micro-Jet Impingement Heat Sink
,”
Heat Mass Transfer
,
49
(
11
), pp.
1613
1624
.10.1007/s00231-013-1202-3
9.
Wu
,
R.
,
Hong
,
T.
,
Cheng
,
Q.
,
Zou
,
H.
,
Fan
,
Y.
, and
Luo
,
X.
,
2019
, “
Thermal Modeling and Comparative Analysis of Jet Impingement Liquid Cooling for High Power Electronics
,”
Int. J. Heat Mass Transfer
,
137
, pp.
42
51
.10.1016/j.ijheatmasstransfer.2019.03.112
10.
Natarajan
,
G.
, and
Bezama
,
R. J.
,
2007
, “
Microjet Cooler With Distributed Returns
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
779
787
.10.1080/01457630701328627
11.
Tan
,
L.
,
Zhang
,
J. Z.
, and
Xu
,
H. S.
,
2014
, “
Jet Impingement on a Rib-Roughened Wall Inside Semi-Confined Channel
,”
Int. J. Therm. Sci.
,
86
, pp.
210
218
.10.1016/j.ijthermalsci.2014.06.037
12.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.10.1016/j.ijheatmasstransfer.2007.12.012
13.
Mahjoob
,
S.
,
Vafai
,
K.
, and
Reginald
,
N. B.
,
2008
, “
Rapid Microfluidic Thermal Cycler for Polymerase Chain Reaction Nucleic Acid Amplification
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2109
2122
.10.1016/j.ijheatmasstransfer.2007.11.014
14.
Zing
,
C.
, and
Mahjoob
,
S.
,
2019
, “
Thermal Analysis of Multi Jet Impingement Through Porous Media to Design a Confined Heat Management System
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
8
), pp.
082203
1
082203-12
.10.1115/1.4044008
15.
Mahjoob
,
S.
, and
Kashkuli
,
S.
,
2021
, “
Thermal Transport Analysis of Injected Flow Through Combined Rib and Metal Foam in Converging Channels With Application in Electronics Hotspot Removal
,”
Int. J. Heat Mass Transfer
,
177
, pp.
121223
1
121223-19
.10.1016/j.ijheatmasstransfer.2021.121223
16.
Kamotani
,
Y.
, and
Greber
,
I.
,
1974
, “
Experiments on Confined Turbulent Jets in Crossflow
,”
NASA
, Washington, DC, Report No. NASA-CR-2392.
17.
Broadwell
,
J. E.
, and
Breidenthal
,
R. E.
,
1984
, “
Structure and Mixing of a Transverse Jet in Incompressible Flow
,”
J. Fluid Mech.
,
148
, pp.
405
412
.10.1017/S0022112084002408
18.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2006
, “
Two-Dimensional Model Problem to Explain Counter-Rotating Vortex Pair Formation in a Transverse Jet
,”
Phys. Fluids
,
18
(
8
), pp.
085103
1
085103-9
.10.1063/1.2236304
19.
Karagozian
,
A. R.
,
2014
, “
The Jet in Crossflow
,”
Phys. Fluids
,
26
(
10
), p.
101303
.10.1063/1.4895900
20.
Chen
,
Z.
,
Hu
,
K.
,
Mao
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2021
, “
Simple Integral Model for Trajectories of Jet Deflection in Crossflow
,”
Phys. Fluids
,
33
(
11
), p.
111703
.10.1063/5.0073013
21.
Dong
,
P.
,
Lu
,
B.
,
Gong
,
S.
, and
Cheng
,
D.
,
2020
, “
Experimental Study of Submerged Gas Jets in Liquid Cross Flow
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109998
.10.1016/j.expthermflusci.2019.109998
22.
Kelso
,
R. M.
, and
Smits
,
A. J.
,
1995
, “
Horseshoe Vortex Systems Resulting From the Interaction Between a Laminar Boundary Layer and a Transverse Jet
,”
Phys. Fluids
,
7
(
1
), pp.
153
158
.10.1063/1.868736
23.
Broumand
,
M.
, and
Birouk
,
M.
,
2017
, “
Effect of Nozzle-Exit Conditions on the Near-Field Characteristics of a Transverse Liquid Jet in a Subsonic Uniform Cross Airflow
,”
Phys. Fluids
,
29
(
11
), p.
113303
.10.1063/1.4994978
24.
Prakash
,
R. S.
,
Sinha
,
A.
,
Tomar
,
G.
, and
Ravikrishna
,
R. V.
,
2018
, “
Liquid Jet in Crossflow – Effect of Liquid Entry Conditions
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
45
56
.10.1016/j.expthermflusci.2017.12.012
25.
Erdem
,
E.
, and
Kontis
,
K.
,
2010
, “
Numerical and Experimental Investigation of Transverse Injection Flows
,”
Shock Waves
,
20
(
2
), pp.
103
118
.10.1007/s00193-010-0247-1
26.
Guo
,
T.-t.
,
Li
,
S.-h.
, and Xu, Z.,
2006
, “
Numerical Simulation of Turbulent Jets With Lateral Injection Into a Crossflow
,”
J. Hydrodyn.
,
18
(
3
), pp.
319
323
.10.1016/S1001-6058(06)60010-3
27.
Dai
,
C.
,
Jia
,
L.
,
Zhang
,
J.
,
Shu
,
Z.
, and
Mi
,
J.
,
2016
, “
On the Flow Structure of an Inclined Jet in Crossflow at Low Velocity Ratios
,”
Int. J. Heat Fluid Flow
,
58
, pp.
11
18
.10.1016/j.ijheatfluidflow.2015.12.001
28.
Pokharel
,
P.
, and
Acharya
,
S.
,
2021
, “
Dynamics of Circular and Rectangular Jets in Crossflow
,”
Comput. Fluids
,
230
, p.
105111
.10.1016/j.compfluid.2021.105111
29.
Eckert
,
E. R. G.
,
Goldstein
,
R. J.
,
Ibele
,
W. E.
,
Patankar
,
S. V.
,
Simon
,
T. W.
,
Strykowski
,
P. J.
,
Tamma
,
K. K.
, et al.,
1999
, “
Heat Transfer-a Review of 1995 Literature
,”
Int. J. Heat Mass Transfer
,
42
(
15
), pp.
2717
2797
.10.1016/S0017-9310(98)00277-4
30.
Mahjoob
,
S.
, and
Taeibi-Rahni
,
M.
,
2006
, “
Parameters Affecting Turbulent Film Cooling- RANS Computational Simulation
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
1
), pp.
92
100
.10.2514/1.14616
31.
Fan
,
X.
,
Li
,
L.
,
Zou
,
J.
,
Wang
,
J.
, and
Wu
,
F.
,
2018
, “
Local Heat Transfer of Vortex Cooling With Multiple Tangential Nozzles in a Gas Turbine Blade Leading Edge Cooling Passage
,”
Int. J. Heat Mass Transfer
,
126
, pp.
377
389
.10.1016/j.ijheatmasstransfer.2018.06.018
32.
Mohammadshahi
,
S.
,
Samsam-Khayani
,
H.
,
Cai
,
T.
,
Nili-Ahmadabadi
,
M.
, and
Kim
,
K. C.
,
2021
, “
Experimental Study on Flow Characteristics and Heat Transfer of an Oscillating Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
173
, p.
121208
.10.1016/j.ijheatmasstransfer.2021.121208
33.
Masip
,
Y.
,
Campo
,
A.
, and
Nuñez
,
S. M.
,
2020
, “
Experimental Analysis of the Thermal Performance on Electronic Cooling by a Combination of Cross-Flow and an Impinging Air Jet
,”
Appl. Therm. Eng.
,
167
, p.
114779
.10.1016/j.applthermaleng.2019.114779
34.
Rundström
,
D.
, and
Moshfegh
,
B.
,
2009
, “
Large-Eddy Simulation of an Impinging Jet in a Cross-Flow on a Heated Wall-Mounted Cube
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
921
931
.10.1016/j.ijheatmasstransfer.2008.03.035
35.
Popovac
,
M.
, and
Hanjalic’
,
K.
,
2009
, “
Vortices and Heat Flux Around a Wall-Mounted Cube Cooled Simultaneously by a Jet and a Crossflow
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
4047
4062
.10.1016/j.ijheatmasstransfer.2009.03.042
36.
Panton
,
R. L.
,
2013
,
Compressible Flow
,
Wiley
, Hoboken, NJ
.
37.
ANSYS
,
2018
,
ANSYS Fluent User Guide
,
ANSYS
, Canonsburg, PA.
38.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.10.1016/0017-9310(96)00135-4
39.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.