Abstract

Axial conduction is a crucial performance deteriorating factor in miniaturized heat transfer devices, primarily due to the low fluid flow rates, high solid cross-sectional to free-flow area ratio, and use of high thermal conductivity materials. These causative factors, inherent to microscale systems, should be chosen such that the axial conduction is minimum. The reciprocating flow of the convective fluid (instead of steady unidirectional flow) is proposed per se as an alternative, which directly alters the solid temperature profile, the root cause of axial conduction. An experimental setup has been built as proof of the concept. In the test rig, a double-acting reciprocating pump generates a fully reversing periodic flow of air through a flow channel carved into a steel block embedded with a heater. The experimental temperature profile in the solid at the cyclic steady-state is bell-shaped, indicating a virtual adiabatic plane capable of restricting axial heat transfer. The experimental results are verified with taking the help of an independent and detailed finite-element-based numerical analysis. Similarly, the nondimensional interfacial flux ratio (ϕ0), integrally related to axial conduction, for unidirectional and reciprocating flow are found to be significantly different. This ratio in the vicinity of the inlet is 53% less with the reciprocating compared to the equivalent unidirectional flow. The optimal thermal performance with the reciprocating flow is correlated through a critical Strouhal number expression, SrπDh/L. In thermal management applications employing reciprocating flow, the limiting relation can be used to determine flow parameters and optimum geometry.

References

1.
Narayan
,
V.
,
Ferguson
,
A.
,
Lin
,
Y.-C.
,
Kirkpatrick
,
B.
,
Hayes
,
M.
, and
Prak
,
A.
,
2019
, “
Towards High-Throughput DNA Synthesis in a Silicon-Based MEMS ‘Virtual Thermal Well’-Array
,” COMSOL AB, Stockholm, Sweden, last accessed Feb. 8, 2023, https://www.comsol.com/paper/towards-high-throughput-dna-synthesis-in-a-silicon-based-mems-virtual-thermal-we-82331
2.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
e-Prime—Adv. Electr. Eng., Electron. Energy
,
1
, p.
100009
.10.1016/j.prime.2021.100009
3.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
.10.1016/j.applthermaleng.2009.05.015
4.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.10.1016/j.ijthermalsci.2004.01.003
5.
Mitra
,
I.
,
Balasundaran
,
G. P.
, and
Ghosh
,
I.
,
2022
, “
Microchannel Counter-Current Heat Exchanger Analysis Highlighting Equitability of Conventional Heat Transfer Theory in Both Macro and Micro Domains
,”
Appl. Therm. Eng.
,
216
, p.
119054
.10.1016/j.applthermaleng.2022.119054
6.
Kroeger
,
P. G.
,
1967
, “
Performance Deterioration in High Effectiveness Heat Exchangers Due to Axial Heat Conduction Effects
,”
Advances in Cryogenic Engineering
,
Springer
,
Boston, MA
, pp.
363
372
.
7.
Ghosh
,
I.
,
Sarangi
,
S. K.
, and
Das
,
P. K.
,
2007
, “
Simulation Algorithm for Multistream Plate Fin Heat Exchangers Including Axial Conduction, Heat Leakage, and Variable Fluid Property
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
7
), pp.
884
893
.10.1115/1.2717938
8.
Cotton
,
M. A.
, and
Jackson
,
J. D.
,
1985
, “
The Effect of Heat Conduction in a Tube Wall Upon Forced Convection Heat Transfer in the Thermal Entry Region
,”
Proceedings of Numerical Methods in Thermal Problems
, Vol.
4
,
Pineridge Press
,
Swansea, UK
, pp.
504
515
.
9.
Nellis
,
G. F.
,
2003
, “
A Heat Exchanger Model That Includes Axial Conduction, Parasitic Heat Loads, and Property Variations
,”
Cryogenics
,
43
(
9
), pp.
523
538
.10.1016/S0011-2275(03)00132-2
10.
Chiou
,
J. P.
,
1980
, “
The Advancement of Compact Heat Exchanger Theory Considering the Effects of Longitudinal Heat Conduction and Flow Non-Uniformity
,”
Symposium on Compact Heat Exchangers-History, Technological Advancement and Mechanical Design Problems Book no. G00183, HTD, Vol. 10, ASME, New York, pp. 101–121
.
11.
Yuan
,
P.
, and
Kou
,
H. S.
,
2006
, “
The Optimal Aspect Ratio on the Thermal Performance in a Crossflow Heat Exchanger With Longitudinal Wall Conduction
,”
Heat Transfer Eng.
,
27
(
10
), pp.
36
43
.10.1080/01457630600904676
12.
Mitra
,
I.
, and
Ghosh
,
I.
,
2023
, “
Axial Conduction in Cross-Flow Heat Exchangers: An Analytical Approach to the Coupled Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
200
, p.
123502
.10.1016/j.ijheatmasstransfer.2022.123502
13.
Khandekar
,
S.
, and
Moharana
,
M.
,
2015
, “
Axial Back Conduction Through Channel Walls During Internal Convective Microchannel Flows
,”
Nanoscale and Microscale Phenomena: Fundamentals and Applications
,
Y. M.
Joshi
, and
S.
Khandekar
, eds.,
Springer India
,
New Delhi, India
, pp.
335
369
.
14.
Goli
,
S.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2023
, “
Exploring the Effect of Axial Wall Conduction on the Heat Transfer Mechanism of Hourglass Microchannels: Design Guidelines for Maintaining a Constant Wall Temperature
,”
Appl. Therm. Eng.
,
231
, p.
120913
.10.1016/j.applthermaleng.2023.120913
15.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.10.1016/j.ijheatmasstransfer.2004.04.016
16.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2020
, “
Microscale Heat Transfer
,”
Microscale Flow and Heat Transfer (Mechanical Engineering Series)
,
Springer
,
Cham, Switzerland
.
17.
Cole
,
K. D.
, and
Çetin
,
B.
,
2011
, “
The Effect of Axial Conduction on Heat Transfer in a Liquid Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2542
2549
.10.1016/j.ijheatmasstransfer.2011.02.007
18.
Jha
,
A. A.
, and
Agrawal
,
A.
,
2023
, “
Low Peclet Gaseous Flows Through Circular Pipe Under Two Different Thermal Conditions
,”
J. Therm. Anal. Calorim.
,
148
(
7
), pp.
2799
2814
.10.1007/s10973-022-11772-z
19.
Ye
,
Q.
,
Zhang
,
Y.
, and
Wei
,
J.
,
2021
, “
A Comprehensive Review of Pulsating Flow on Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
196
, p.
117275
.10.1016/j.applthermaleng.2021.117275
20.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
107
(
2
), pp.
459
462
.10.1115/1.3247437
21.
Kurzweg
,
U. H.
, and
Zhao
,
L.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
, pp.
624
627
.10.1063/1.864563
22.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels
,”
J. Fluid Mech.
,
156
, pp.
291
300
.10.1017/S0022112085002105
23.
Kurzweg
,
U. H.
,
1986
, “
Temporal and Spatial Distribution of Heat Flux in Oscillating Flow Subjected to an Axial Temperature Gradient
,”
Int. J. Heat Mass Transfer
,
29
(
12
), pp.
1969
1977
.10.1016/0017-9310(86)90016-5
24.
Zhao
,
T.
, and
Cheng
,
P.
,
1995
, “
A Numerical Solution of Laminar Forced Convection in a Heated Pipe Subjected to a Reciprocating Flow
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3011
3022
.10.1016/0017-9310(95)00017-4
25.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
3
), pp.
592
597
.10.1115/1.2822673
26.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1998
, “
A Numerical Study of Laminar Reciprocating Flow in a Pipe of Finite Length
,”
Appl. Sci. Res.
,
59
, pp.
1
16
.10.1023/A:1000816032423
27.
Sert
,
C.
, and
Beskok
,
A.
,
2003
, “
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
3
), pp.
403
412
.10.1115/1.1565092
28.
Leong
,
K. C.
, and
Jin
,
L. W.
,
2005
, “
An Experimental Study of Heat Transfer in Oscillating Flow Through a Channel Filled With an Aluminium Foam
,”
Int. J. Heat Mass Transfer
,
48
(
2
), pp.
243
253
.10.1016/j.ijheatmasstransfer.2004.08.025
29.
Mochizuki
,
S.
,
Murata
,
A.
, and
Saito
,
H.
,
2007
, “
Axial Heat Transport Mechanism Due to Reciprocating Flow in a Ribbed Tube
,”
J. Therm. Sci. Technol.
,
2
(
2
), pp.
156
167
.10.1299/jtst.2.156
30.
Fan
,
A.
,
Fulmer
,
D.
, and
Hartenstine
,
J.
,
2008
, “
Experimental Study of Oscillating Flow Heat Transfer
,”
Micro/Nanoscale Heat Transfer International Conference
,
Tainan, Taiwan
, Jan. 6–9, pp.
1
8
.
31.
Chen
,
Z.
,
Utaka
,
Y.
, and
Tasaki
,
Y.
,
2014
, “
Measurement and Numerical Simulation on the Heat Transfer Characteristics of Reciprocating Flow in Microchannels for the Application in Magnetic Refrigeration
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
150
157
.10.1016/j.applthermaleng.2014.01.007
32.
Grossman
,
G.
, and
Nachman
,
I.
,
2006
, “
An Analytical Heat Transfer Model for Reciprocating Laminar Flow in a Channel
,”
AIP Conf. Proc.
823
, pp.
1580
1587
.10.1063/1.2202583
33.
Raizner
,
M.
,
Garaway
,
I.
, and
Grossman
,
G.
,
2007
, “
A Numerical CFD Model for Reciprocating Laminar Flow in a Channel
,” Proceedings of the 14th International Cryocooler Conference, International Cryocooler Conference Inc., Boulder, CO, pp.
317
326
.
34.
Bi
,
H.
,
Yang
,
J.
,
Chen
,
C.
, and
Luo
,
B.
,
2023
, “
Heat Transfer and Flow Characteristics of Intermittent Oscillating Flow in Tube
,”
Appl. Therm. Eng.
,
225
, p.
120233
.10.1016/j.applthermaleng.2023.120233
35.
Wang
,
J.
,
Deng
,
X.
,
Jia
,
D.
,
Lei
,
J.
, and
Xie
,
G.
,
2023
, “
Numerical Investigation on Effects of Rib Shapes on Oscillating Flow and Heat Transfer in Heat Exchanger Channels
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101919
.10.1016/j.tsep.2023.101919
36.
Panda
,
D.
,
Satapathy
,
A. K.
, and
Sarangi
,
S. K.
,
2022
, “
Influence of Gas Axial Conduction Enhancement Factor on the Oscillating Flow Behavior of an Inertance Pulse Tube Cryocooler
,”
Cryogenics
,
122
, p.
103437
.10.1016/j.cryogenics.2022.103437
37.
Camara
,
J. M.
,
Lorens
,
D. C.
,
Solano
,
J. P.
, and
Vicente
,
P.
,
2021
, “
Baffled Tubes With Superimposed Oscillatory Flow: Experimental Study of the Fluid Mixing and Heat Transfer at Low Net Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
123
, p.
110324
.10.1016/j.expthermflusci.2020.110324
38.
Wang
,
H.
, and
Ma
,
L.
,
2017
, “
Thermal Management of a Large Prismatic Battery Pack Based on Reciprocating Flow and Active Control
,”
Int. J. Heat Mass Transfer
,
115
, pp.
296
303
.10.1016/j.ijheatmasstransfer.2017.07.060
39.
Lelea
,
D.
,
2007
, “
The Conjugate Heat Transfer of the Partially Heated Microchannels
,”
Heat Mass Transfer
,
44
(
1
), pp.
33
41
.10.1007/s00231-006-0228-1
40.
Mitra
,
I.
, and
Ghosh
,
I.
,
2021
, “
Analytical Closed-Form Solution for Fluid Flow Through Microchannel Heat Sinks Including Axial Conduction
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105732
.10.1016/j.icheatmasstransfer.2021.105732
41.
Wolfram Research
,
1991
, “
NDSolve, Wolfram Language Function
,” Wolfram Research, Champagne, IL, accessed June 16, 2023, https://reference.wolfram.com/language/ref/NDSolve.html
42.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.10.1147/rd.112.0215
43.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
, “
Fundamentals of Heat and Mass Transfer
,”
Internal Flow
, 7th ed.,
Wiley Publication
,
Hoboken, NJ
, pp.
517
592
.
44.
Mitra
,
I.
, and
Ghosh
,
I.
,
2022
, “
Analytical Study on Intricacies of Axial Conduction in Microchannel Heat Sinks
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
, p.
094502
.10.1115/1.4054772
45.
Moharana
,
M. K.
,
Singh
,
P. K.
, and
Khandekar
,
S.
,
2012
, “
Optimum Nusselt Number for Simultaneously Developing Internal Flow Under Conjugate Conditions in a Square Microchannel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
, p.
071703
.10.1115/1.4006110
46.
Baek
,
S.
,
Bradley
,
P. E.
, and
Radebaugh
,
R.
,
2018
, “
Heat Transfer Coefficient Measurement of LN2 and GN2 in a Microchannel at Low Reynolds Flow
,”
Int. J. Heat Mass Transfer
,
127
, pp.
222
233
.10.1016/j.ijheatmasstransfer.2018.07.145
47.
White
,
F.
,
2011
, “
Fluid Mechanics
,”
Dimensional Analysis and Similarity
, 7th ed.,
McGraw-Hill Publication
,
New York
, pp.
293
346
.
You do not currently have access to this content.