Abstract

Mini-channel heat exchangers are widely used due to their compact structures and high efficiency. Integrating heat exchangers with triply periodic minimal surfaces (TPMS) has shown great potential to optimize the flow and heat transfer performance. In this study, Gyroid (G), Diamond (D), and IWP type TPMS-based heat exchangers are constructed in three dimensions. The thermal-hydraulic, entropy production, and flow-induced noise characteristics of TPMS-based heat exchangers are numerically investigated. The results indicate that the TPMS channels with larger viscosity entropy production have smaller thermal entropy production due to the greater flow disturbance. The G-channel has the highest friction factor and the lowest sound source intensity, while the D-channel obtains the strongest sound source intensity due to frequent cross-collisions of the fluid. The sound source intensity of the IWP channel is 10% lower than the D-channel. The wall dipole sound source plays a dominant role in TPMS channels. This study provides different perspectives to evaluate the performance of a TPMS heat exchanger and provides references for the design and optimization of TPMS heat exchangers.

References

1.
Feng
,
J. W.
,
Fu
,
J. Z.
,
Yao
,
X. H.
, and
He
,
Y.
,
2022
, “
Triply Periodic Minimal Surface (TPMS) Porous Structures: From Multi-Scale Design, Precise Additive Manufacturing to Multidisciplinary Applications
,”
Int. J. Extreme Manuf.
,
4
(
2
), p.
022001
.10.1088/2631-7990/ac5be6
2.
Al-Ketan
,
O.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
MS Lattice: A Free Software for Generating Uniform and Graded Lattices Based on Triply Periodic Minimal Surfaces
,”
Mater. Des. Process. Commun.
,
3
(
6
), p.
205
.10.1002/mdp2.205
3.
Kapfer
,
S. C.
,
Hyde
,
S. T.
,
Mecke
,
K.
,
Arns
,
C. H.
, and
Schröder-Turk
,
G. E.
,
2011
, “
Minimal Surface Scaffold Designs for Tissue Engineering
,”
Biomaterials
,
32
(
29
), pp.
6875
6882
.10.1016/j.biomaterials.2011.06.012
4.
Lei
,
H. Y.
,
Li
,
J. R.
,
Wang
,
Q. H.
,
Xu
,
Z. J.
,
Zhou
,
W.
,
Yu
,
C. L.
, and
Zheng
,
T. Q.
,
2019
, “
Feasibility of Preparing Additive Manufactured Porous Stainless Steel Felts With Mathematical Micro Pore Structure as Novel Catalyst Support for Hydrogen Production Via Methanol Steam Reforming
,”
Int. J. Hydrogen Energy
,
44
(
45
), pp.
24782
24791
.10.1016/j.ijhydene.2019.07.187
5.
Yang
,
W.
,
An
,
J.
,
Chua
,
C. K.
, and
Zhou
,
K.
,
2020
, “
Acoustic Absorptions of Multifunctional Polymeric Cellular Structures Based on Triply Periodic Minimal Surfaces Fabricated by Stereolithography
,”
Virtual Phys. Prototyp.
,
15
(
2
), pp.
242
249
.10.1080/17452759.2020.1740747
6.
Thomas
,
N.
,
Sreedhar
,
N.
,
Al-Ketan
,
O.
,
Rowshan
,
R.
,
Abu Al-Rub
,
R. K.
, and
Arafat
,
H.
,
2018
, “
3D Printed Triply Periodic Minimal Surfaces as Spacers for Enhanced Heat and Mass Transfer in Membrane Distillation
,”
Desalination
,
443
, pp.
256
271
.10.1016/j.desal.2018.06.009
7.
Ouda
,
M.
,
Al-Ketan
,
O.
,
Sreedhar
,
N.
,
Hasan
,
A. M.
,
Abu Al-Rub
,
R. K.
,
Hong
,
S.
, and
Arafat
,
H. A.
,
2020
, “
Novel Static Mixers Based on Triply Periodic Minimal Surface (TPMS) Architectures
,”
J. Environ. Chem. Eng.
,
8
(
5
), p.
104289
.10.1016/j.jece.2020.104289
8.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Flow and Thermal Transport Characteristics of Triply-Periodic Minimal Surface (TPMS)-Based Gyroid and Schwarz-P Cellular Materials
,”
Numer. Heat Transf.; A: Appl.
,
79
(
8
), pp.
553
569
.10.1080/10407782.2021.1872260
9.
Cheng
,
Z. L.
,
Li
,
X. Y.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2021
, “
Investigations on Porous Media Customized by Triply Periodic Minimal Surface: Heat Transfer Correlations and Strength Performance
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105713
.10.1016/j.icheatmasstransfer.2021.105713
10.
Cheng
,
Z. L.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2021
, “
Morphology, Flow and Heat Transfer in Triply Periodic Minimal Surface Based Porous Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120902
.10.1016/j.ijheatmasstransfer.2021.120902
11.
Cheng
,
Z. L.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2023
, “
Transpiration Cooling With Phase Change by Functionally Graded Porous Media
,”
Int. J. Heat Mass Transfer
,
205
, p.
123862
.10.1016/j.ijheatmasstransfer.2023.123862
12.
Wang
,
F.
,
Jiang
,
H.
,
Chen
,
Y.
, and
Li
,
X.
,
2021
, “
Predicting Thermal and Mechanical Performance of Stochastic and Architected Foams
,”
Int. J. Heat Mass Transfer
,
171
, p.
121139
.10.1016/j.ijheatmasstransfer.2021.121139
13.
Li
,
W. H.
,
Yu
,
G.
, and
Yu
,
Z.
,
2020
, “
Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles
,”
Appl. Therm. Eng.
,
179
, p.
115686
.10.1016/j.applthermaleng.2020.115686
14.
Lesmana
,
L. A.
, and
Aziz
,
M.
,
2023
, “
Adoption of Triply Periodic Minimal Surface Structure for Effective Metal Hydride-Based Hydrogen Storage
,”
Energy
,
262
, p.
125399
.10.1016/j.energy.2022.125399
15.
Al-Ketan
,
O.
,
Ali
,
M.
,
Khalil
,
M.
,
Rowshan
,
R.
,
Khan
,
K. A.
, and
Abu Al-Rub
,
R. K.
,
2021
, “
Forced Convection Computational Fluid Dynamics Analysis of Architected and Three-Dimensional Printable Heat Sinks Based on Triply Periodic Minimal Surfaces
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021010
.10.1115/1.4047385
16.
Wang
,
J. H.
,
Chen
,
K.
,
Zeng
,
M.
,
Ma
,
T.
,
Wang
,
Q. W.
, and
Cheng
,
Z. L.
,
2023
, “
Investigation on Flow and Heat Transfer in Various Channels Based on Triply Periodic Minimal Surfaces (TPMS)
,”
Energ. Convers. Manage.
,
283
, p.
116955
.10.1016/j.enconman.2023.116955
17.
Wang
,
J. H.
,
Chen
,
K.
,
Zeng
,
M.
,
Ma
,
T.
,
Wang
,
Q. W.
, and
Cheng
,
Z. L.
,
2023
, “
Assessment of Flow and Heat Transfer of Triply Periodic Minimal Surface Based Heat Exchangers
,”
Energy
,
282
, p.
128806
.10.1016/j.energy.2023.128806
18.
Hassan
,
A. M.
,
Al-Ketan
,
O.
,
Baobaid
,
N.
,
Khan
,
K.
, and
Abu Al-Rub
,
R. K.
,
2019
, “
A Study on the Fluid Flow and Heat Transfer for a Porous Architected Heat Sink Using the Idea of CFD Modelling
,”
ASME
Paper No. IMECE2019-11498. 10.1115/IMECE2019-11498
19.
Wang
,
Z.
,
Luo
,
Y.
, and
Chu
,
Y.
,
2021
, “
Review of Acoustic Control and Underwater Application of Bionic Acoustic Metamaterials
,”
J. Synth. Cryst.
,
50
(
7
), pp.
1234
1247
.
20.
Wang
,
L.
,
Liu
,
X. M.
,
Liu
,
G.
, and
Xi
,
G.
,
2020
, “
Noise Reduction Mechanism of Bionic Coupled Blades of Axial Flow Fan
,”
J. Xi'an Jiaotong Univ.
,
54
(
11
), pp.
81
90
.10.7652/xjtuxb202011010
21.
Li
,
D.
,
Liu
,
X.
,
Hu
,
F.
, and
Wang
,
L.
,
2019
, “
Effect of Trailing Edge Serrations on Noise Reduction in a Coupled Bionic Aerofoil Inspired by Barn Owls
,”
Bioinspir. Biomim.
,
15
(
1
), p.
016009
.10.1088/1748-3190/ab529e
22.
Chen
,
W.
,
Qiao
,
W.
,
Duan
,
W.
, and
Wei
,
Z.
,
2021
, “
Experimental Study of Airfoil Instability Noise With Wavy Leading Edges
,”
Appl. Acoust.
,
172
, p.
107671
.10.1016/j.apacoust.2020.107671
23.
Chen
,
W.
,
Qiao
,
W.
, and
Wei
,
Z.
,
2020
, “
Aerodynamic Performance and Wake Development of Airfoils With Wavy Leading Edges
,”
Aerosp. Sci. Technol.
,
106
, p.
106216
.10.1016/j.ast.2020.106216
24.
Li
,
M.
,
Wu
,
J.
, and
Yuan
,
X.
,
2021
, “
Wall Suction & Slip Effect of Spherical Grooved Bionic Metasurface for Controlling the Aerodynamic Noise
,”
Appl. Acoust.
,
171
, p.
107537
.10.1016/j.apacoust.2020.107537
25.
Li
,
M.
,
Wu
,
J.
, and
Yuan
,
X.
,
2021
, “
Broadband Suppression of Aerodynamic Pressure on the High Speed Bluff Body Surface With Periodic Square Cavity Acoustic Metasurface
,”
AIP Adv.
,
11
(
10
), p.
11105004
.10.1063/5.0056589
26.
Hu
,
H.
,
Tang
,
B.
, and
Zhang
,
Y.
,
2018
, “
Application of the Bionic Concept in Reducing the Complexity Noise and Drag of the Mega High Speed Train Based on Computer Simulation Technologies
,”
Complexity
,
2018
, pp.
1
14
.10.1155/2018/3689178
27.
Wang
,
X.
,
Lin
,
G.
,
Li
,
N.
, and
Lin
,
H.
,
2021
, “
Research on Flow Noise Control Technology for Water Pipeline Based on Bionic Theory
,”
J. Huazhong Univ. Sci.
,
49
(
11
), pp.
123
127
.10.13245/j.hust.211121
28.
ANSYS Inc.
,
2013
, “
ANSYS Fluent Theory Guide 15.0
,”
ANSYS
, Canonsburg, PA.
29.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically I. General Theory
,”
Int. J. Math. Phys. Sci.
,
211
(
1107
), pp.
564
587
.
30.
Curle
,
N.
,
1955
, “
The Influence of Solid Boundaries Upon Aerodynamic Sound
,”
Int. J. Math. Phys. Sci.
,
231
, pp.
505
514
.10.1098/rspa.1955.0191
31.
Martínez Lera
,
P.
,
Schram
,
C.
,
Föller
,
S.
,
Kaess
,
R.
, and
Polifke
,
W.
,
2009
, “
Identification of the Aeroacoustic Response of a Low Mach Number Flow Through a T Joint
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
582
586
.10.1121/1.3159604
32.
Kim
,
I. H.
,
No
,
H. C.
,
Lee
,
J. I.
, and
Jeon
,
B. G.
,
2009
, “
Thermal Hydraulic Performance Analysis of the Printed Circuit Heat Exchanger Using a Helium Test Facility and CFD Simulations
,”
Nucl. Eng. Des.
,
239
(
11
), pp.
2399
2408
.10.1016/j.nucengdes.2009.07.005
33.
Lv
,
J. W.
,
2010
,
Study on Prediction and Experimental Measurement of Flow Noise in Pipes With Varying Cross-Sectional Area
,
Harbin Engineering University
,
Harbin, China
.
34.
Wang
,
J. H.
,
Shi
,
H. N.
,
Zeng
,
M.
,
Ma
,
T.
, and
Wang
,
Q. W.
,
2022
, “
Investigations on Thermal–Hydraulic Performance and Entropy Generation Characteristics of Sinusoidal Channeled Printed Circuit LNG Vaporizer
,”
Clean Technol. Environ. Policy
,
24
(
1
), pp.
95
108
.10.1007/s10098-021-02084-1
You do not currently have access to this content.