Abstract

The spraying of chemicals such as mono-ethanolamine (MEA) and aqueous ammonia is widely used in spray columns for CO2 removal from the combustion flue gasses. When droplets in the spray interact with flue gas, due to temperature difference, along with the absorption of CO2 from the flue gas, they also undergo evaporation. Also, the presence of other droplets in the vicinity of a given droplet can influence evaporation as well as gas absorption into it. Understanding the droplet evaporation and the influence of the surrounding droplets on the evaporation of droplets are one of the critical aspects to address for developing reliable models for CO2 capture from flue gasses. This work investigates the influence of neighboring droplets on evaporation of a droplet in question and comparison with evaporation of an isolated droplet. Various configurations of suspended droplets of water, aqueous ammonia, and MEA were examined within a temperature range spanning from 75 °C to 125 °C. The droplets, placed on a microfiber grid made up of 100 μm glass fiber, were introduced into a heating chamber, and temporal variation of the droplet size was recorded using backlit imaging. Images were processed using Matlab algorithms to obtain the droplet's evaporation rate. Variation in the evaporation rate is evaluated with respect to the temperature and available surface area for vapor diffusion. The results indicate that the presence of neighboring droplets influences the droplet evaporation, and the magnitude of influence depends both on the number of droplets as well as their proximity. Of the three liquids studied, influence of neighboring droplets found to be more significant in case of MEA. To consider the influence of neighboring droplets and their proximity, a novel independent parameter called surface area ratio (SAR) was introduced by combining both the parameters. The analysis involved investigating the variation in the normalized evaporation rate in relation to the SAR parameter. It was found that the normalized rate of evaporation under different conditions studied varies linearly with SAR. A correlation is developed between the normalized evaporation rate and SAR combining the data from all the cases studied which can be used to correct rate of evaporation in computational models.

References

1.
Curtis
,
P. S.
, and
Gough
,
C. M.
,
2018
, “
Forest Aging, Disturbance and the Carbon Cycle
,”
New Phytol.
,
219
(
4
), pp.
1188
1193
.10.1111/nph.15227
2.
Abas
,
N.
,
Kalair
,
A.
, and
Khan
,
N.
,
2015
, “
Review of Fossil Fuels and Future Energy Technologies
,”
Futures
,
69
, pp.
31
49
.10.1016/j.futures.2015.03.003
3.
Bhati
,
A.
,
Bilyaz
,
S.
, and
Bahadur
,
V.
,
2023
, “
Analytical First-Principles-Based Model for Sprays-Based CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
128
, p.
103969
.10.1016/j.ijggc.2023.103969
4.
C¸Oban
,
T.
, and
Boehm
,
R.
,
1989
, “
Performance of a Three-Phase, Spray-Column, Direct-Contact Heat Exchanger
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
1
), pp.
166
172
.10.1115/1.3250639
5.
Seyboth
,
O.
,
Zimmermann
,
S.
,
Heidel
,
B.
, and
Scheffknecht
,
G.
,
2014
, “
Development of a Spray Scrubbing Process for Post Combustion CO2 Capture With Amine Based Solvents
,”
Energy Procedia
,
63
, pp.
1667
1677
.10.1016/j.egypro.2014.11.176
6.
Javed
,
K. H.
,
Mahmud
,
T.
, and
Purba
,
E.
,
2010
, “
The CO2 Capture Performance of a High-Intensity Vortex Spray Scrubber
,”
Chem. Eng. J.
,
162
(
2
), pp.
448
456
.10.1016/j.cej.2010.03.038
7.
Darake
,
S.
,
Hatamipour
,
M. S.
,
Rahimi
,
A.
, and
Hamzeloui
,
P.
,
2016
, “
SO2 Removal by Seawater in a Spray Tower: Experimental Study and Mathematical Modeling
,”
Chem. Eng. Res. Des.
,
109
, pp.
180
189
.10.1016/j.cherd.2015.11.027
8.
Öi
,
L. E.
,
2010
, “
CO2 Removal by Absorption: Challenges in Modelling
,”
Math. Comput. Modell. Dyn. Syst.
,
16
(
6
), pp.
511
533
.10.1080/13873954.2010.491676
9.
Reynolds
,
A. J.
,
Verheyen
,
T. V.
,
Adeloju
,
S. B.
,
Meuleman
,
E.
, and
Feron
,
P.
,
2012
, “
Towards Commercial Scale Postcombustion Capture of CO2 With Monoethanolamine Solvent: Key Considerations for Solvent Management and Environmental Impacts
,”
Environ. Sci. Technol.
,
46
(
7
), pp.
3643
3654
.10.1021/es204051s
10.
Kuntz
,
J.
, and
Aroonwilas
,
A.
,
2008
, “
Performance of Spray Column for CO2 Capture Application
,”
Ind. Eng. Chem. Res.
,
47
(
1
), pp.
145
153
.10.1021/ie061702l
11.
Koller
,
M.
,
Wappel
,
D.
,
Trofaier
,
N.
, and
Gronald
,
G.
,
2011
, “
Test Results of CO2 Spray Scrubbing With Monoethanolamine
,”
Energy Procedia
,
4
, pp.
1777
1782
.10.1016/j.egypro.2011.02.053
12.
Tamhankar
,
Y.
,
King
,
B.
,
Whiteley
,
J.
,
Cai
,
T.
,
McCarley
,
K.
,
Resetarits
,
M.
, and
Aichele
,
C.
,
2015
, “
Spray Absorption of CO2 Into Monoethanolamine: Mass Transfer Coefficients, Dropsize, and Planar Surface Area
,”
Chem. Eng. Res. Des.
,
104
, pp.
376
389
.10.1016/j.cherd.2015.08.012
13.
Xu
,
Y.
,
Chen
,
X.
,
Zhao
,
Y.
, and
Jin
,
B.
,
2021
, “
Modeling and Analysis of CO2 Capture by Aqueous Ammonia + Piperazine Blended Solution in a Spray Column
,”
Sep. Purif. Technol.
,
267
, p.
118655
.10.1016/j.seppur.2021.118655
14.
Feron
,
P.
,
2016
,
Absorption-Based Post-Combustion Capture of Carbon Dioxide
,
Woodhead Publishing
, Sawston, UK.
15.
Chermiti
,
I.
,
Hidouri
,
N.
, and
Ben Brahim
,
A.
,
2014
, “
Entropy Generation Analysis of a Chemical Absorption Process Where Carbon Dioxide Is Absorbed by Falling Monoethanolamine Solution Film
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
12
), p.
123001
.10.1115/1.4028114
16.
Zhao
,
B.
,
Su
,
Y.
,
Tao
,
W.
,
Li
,
L.
, and
Peng
,
Y.
,
2012
, “
Post-Combustion CO2 Capture by Aqueous Ammonia: A State-of-the-Art Review
,”
Int. J. Greenhouse Gas Control
,
9
, pp.
355
371
.10.1016/j.ijggc.2012.05.006
17.
Dash
,
S.
,
Chandramohan
,
A.
, and
Garimella
,
S. V.
,
2014
, “
Flow Visualization During Droplet Evaporation on Hydrophobic and Superhydrophobic Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
8
), p.
080917
.10.1115/1.4027535
18.
Liu
,
L.
,
Liu
,
X.
,
Ren
,
W.
,
Duan
,
H.
,
Duan
,
R.
,
Bin
,
L.
, and
Chen
,
Y.
,
2021
, “
Research on Non-Boiling Evaporation Behavior of Fixed Droplets on Aluminum Plate Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
, accepted.10.1115/1.4050920
19.
Tio
,
K.-K.
, and
Sadhal
,
S. S.
,
1992
, “
Thermal Analysis of Droplet Spray Evaporation From a Heated Solid Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
114
(
1
), pp.
220
226
.10.1115/1.2911250
20.
Pal
,
A. K.
, and
Biswas
,
G.
,
2023
, “
Accurate Prediction of Transport Coefficients of an Evaporating Liquid Drop
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
4
), p.
041602
.10.1115/1.4056542
21.
Akkus
,
Y.
,
Çetin
,
B.
, and
Dursunkaya
,
Z.
,
2019
, “
An Iterative Solution Approach to Coupled Heat and Mass Transfer in a Steadily Fed Evaporating Water Droplet
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
3
), p.
031501
.10.1115/1.4042492
22.
Voytkov
,
I. S.
,
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2018
, “
Temperature and Velocity of the Gas–Vapor Mixture in the Trace of Several Evaporating Water Droplets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
1
), p.
011502
.10.1115/1.4041556
23.
Renksizbulut
,
M.
, and
Yuen
,
M. C.
,
1983
, “
Experimental Study of Droplet Evaporation in a High-Temperature Air Stream
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
105
(
2
), pp.
384
388
.10.1115/1.3245590
24.
Paul
,
A.
, and
Dhar
,
P.
,
2022
, “
Interactive Evaporation of Neighboring Pendant and Sessile Droplet Pair
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
12
), p.
121603
.10.1115/1.4055674
25.
Hatte
,
S.
,
Pandey
,
K.
,
Pandey
,
K.
,
Chakraborty
,
S.
, and
Basu
,
S.
,
2019
, “
Universal Evaporation Dynamics of Ordered Arrays of Sessile Droplets
,”
J. Fluid Mech.
,
866
, pp.
61
81
.10.1017/jfm.2019.105
26.
Liu
,
Q.
,
Lu
,
R.
,
Qiao
,
Y.
,
Zhao
,
F.
, and
Tan
,
S.
,
2022
, “
Analysis of the Correction Factors and Coupling Characteristics of Multi-Droplet Evaporation
,”
Int. J. Heat Mass Transfer
,
195
, p.
123138
.10.1016/j.ijheatmasstransfer.2022.123138
27.
Masoud
,
H.
,
Howell
,
P. D.
, and
Stone
,
H. A.
,
2021
, “
Evaporation of Multiple Droplets
,”
J. Fluid Mech.
,
927
, p. R4.10.1017/jfm.2021.785
28.
Carrier
,
O.
,
Shahidzadeh-Bonn
,
N.
,
Zargar
,
R.
,
Aytouna
,
M.
,
Habibi
,
M.
,
Eggers
,
J.
, and
Bonn
,
D.
,
2016
, “
Evaporation of Water: Evaporation Rate and Collective Effects
,”
J. Fluid Mech.
,
798
, pp.
774
786
.10.1017/jfm.2016.356
29.
Wray
,
A. W.
,
Duffy
,
B. R.
, and
Wilson
,
S. K.
,
2019
, “
Competitive Evaporation of Multiple Sessile Droplets
,”
J. Fluid Mech.
,
884
, p. A45.10.1017/jfm.2019.919
30.
Castanet
,
G.
,
Perrin
,
L.
,
Caballina
,
O.
, and
Lemoine
,
F.
,
2016
, “
Evaporation of Closely-Spaced Interacting Droplets Arranged in a Single Row
,”
Int. J. Heat Mass Transfer
,
93
, pp.
788
802
.10.1016/j.ijheatmasstransfer.2015.09.064
31.
Khilifi
,
D.
,
Foudhil
,
W.
,
Fahem
,
K.
,
Harmand
,
S.
, and
Ben
,
J.
,
2019
, “
Study of the Phenomenon of the Interaction Between Sessile Drops During Evaporation
,”
Therm. Sci.
,
23
(
2 Part B
), pp.
1105
1114
.10.2298/TSCI180406188K
32.
Shahsavan Markadeh
,
R.
,
Arabkhalaj
,
A.
,
Ghassemi
,
H.
, and
Azimi
,
A.
,
2020
, “
Droplet Evaporation Under Spray-Like Conditions
,”
Int. J. Heat Mass Transfer
,
148
, p.
119049
.10.1016/j.ijheatmasstransfer.2019.119049
33.
Pathak
,
A.
, and
Raessi
,
M.
,
2018
, “
Steady-State and Transient Solutions to Drop Evaporation in a Finite Domain: Alternative Benchmarks to the D2 Law
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1147
1158
.10.1016/j.ijheatmasstransfer.2018.06.071
34.
Edwards
,
A. M. J.
,
Cater
,
J.
,
Kilbride
,
J. J.
,
Le Minter
,
P.
,
Brown
,
C. V.
,
Fairhurst
,
D. J.
, and
Ouali
,
F. F.
,
2021
, “
Interferometric Measurement of Co-Operative Evaporation in 2D Droplet Arrays
,”
Appl. Phys. Lett.
,
119
(
15
), p.
151601
.10.1063/5.0064924
35.
Zhao
,
F.
,
Liu
,
Q.
,
Zhao
,
C.
, and
Bo
,
H.
,
2019
, “
Influence Region Theory of the Evaporating Droplet
,”
Int. J. Heat Mass Transfer
,
129
, pp.
827
841
.10.1016/j.ijheatmasstransfer.2018.09.124
36.
Mikhil
,
S.
,
Bakshi
,
S.
, and
Anand
,
T. N. C.
,
2021
, “
A Computational Model for the Evaporation of Urea-Water-Solution Droplets Exposed to a Hot Air Stream
,”
Int. J. Heat Mass Transfer
,
168
, p.
120878
.10.1016/j.ijheatmasstransfer.2020.120878
37.
Surendran
,
M.
,
Anand
,
T. N. C.
, and
Bakshi
,
S.
,
2020
, “
Experimental Investigation of the Evaporation Behavior of Urea-Water-Solution Droplets Exposed to a Hot Air Stream
,”
AIChE J.
,
66
(
2
), p. e16845.10.1002/aic.16845
38.
Turns
,
S. R.
,
2000
,
Introduction to Combustion
,
McGraw-Hill Education
, New York.
39.
Han
,
J.
,
Jin
,
J.
,
Eimer
,
D. A.
, and
Melaaen
,
M. C.
,
2012
, “
Density of Water (1) + Monoethanolamine (2) + CO2 (3) From (298.15 to 413.15) K and Surface Tension of Water (1) + Monoethanolamine (2) From (303.15 to 333.15) K
,”
J. Chem. Eng. Data
,
57
(
4
), pp.
1095
1103
.10.1021/je2010038
40.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2013
,
Ebook: Fluid Mechanics Fundamentals and Applications (SI Units)
,
McGraw-Hill
, New York.
41.
Kestin
,
J.
,
Sokolov
,
M.
, and
Wakeham
,
W. A.
,
1978
, “
Viscosity of Liquid Water in the Range −8 °C to 150 °C
,”
J. Phys. Chem. Ref. Data
,
7
, pp.
941
948
.10.1063/1.555581
42.
Bolz
,
R. E.
,
Ray
,
E.
,
Tuve
,
G. L.
, and
George
,
L.
,
1973
,
CRC Handbook of Tables for Applied Engineering Science
,
CRC Press
, Boca Raton, FL.
43.
Ware
,
G. C.
,
1928
, “
Surface Tension of Liquid Ammonia and Adsorption Studies at Its Liquid Vapor Interface
,” MSc thesis, Kansas State Agricultural College, Waters Hall, Manhattan, NY.
44.
Hommel
,
G.
,
1987
, Handbuch Der Gefährlichen Güter, Merkblatt 160 ‘Phosphorsäuren (Handbook of Dangerous Goods, Sheet 160 ‘Phosphoric Acid’), Springer‐Verlag, Berlin.
45.
Conde
,
M.
,
2006
,
Thermophysical Properties of {NH3 + H2O} Mixtures for the Industrial Design of Absorption Refrigeration Equipment Formulation for Industrial Use
, M. Conde Engineering, Zurich, Switzerland.
46.
Zander
,
M.
, and
Thomas
,
W.
,
1979
, “
Some Thermodynamic Properties of Liquid Ammonia: PVT Data, Vapor Pressure, and Critical Temperature
,”
J. Chem. Eng. Data
,
24
(
1
), pp.
1
2
.10.1021/je60080a003
47.
Pátek
,
J.
, and
Klomfar
,
J.
,
1995
, “
Simple Functions for Fast Calculations of Selected Thermodynamic Properties of the Ammonia-Water System
,”
Int. J. Refrig.
,
18
(
4
), pp.
228
234
.10.1016/0140-7007(95)00006-W
48.
Anderson
,
A. A.
, and
Shimanskaya
,
M. B.
,
1969
, “
Gas-Liquid Chromatography of Some Aliphatic and Heterocyclic Polyfunctional Amines II. Solution Thermodynamics of Amines in the Stationary Phases
,”
Latv. PSR Zinat. Akad. Vestis, Kim. Ser.
,
5
, p.
537
(in Russian).
49.
Arachchige
,
U.
,
Aryal
,
N.
,
Eimer
,
D. A.
, and
Melaaen
,
M. C.
,
2013
, “
Viscosities of Pure and Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA)
,”
Annu. Trans. Nord. Rheol. Soc.
,
21
, p.
299
.
50.
Matthews
,
J. B.
,
Sumner
,
J. F.
, and
Moelwyn-Hughes
,
E. A.
,
1866
,
The Vapour Pressures of Certain Liquids
, Royal Society of Chemistry, London, UK.
51.
Walton
,
D. E.
,
2004
, “
The Evaporation of Water Droplets. A Single Droplet Drying Experiment
,”
Drying Technol.
,
22
(
3
), pp.
431
456
.10.1081/DRT-120029992
52.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
53.
Tanguy
,
S.
,
Ménard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
You do not currently have access to this content.