Abstract

Mitigation of scale formation and performance degradation remains a vital challenge for falling film evaporators in various industries. In this work, an experimental study of falling film flow on a horizontal tube is conducted to investigate the effects of wettability gradients on thermal, hydraulic, and fouling behavior. It is revealed that certain hydrophobic coating patterns, such as strip, ring, and grid patterns, lead to unwetted heat transfer area, which results in decreased heat transfer compared to fully wetted plain tube. By adjusting the geometry and position of the wettability gradient, the hybrid coating demonstrates improved heat transfer performance. Based on the characteristics of horizontal tube falling film flow, impinging jet, thin film flow, and liquid retention at the tube bottom, a hybrid coating pattern is developed to improve surface wetting and mitigate the scaling coverage. It is revealed that scale deposition is regulated by wettability gradient. Crystals tend to be dense and compact in hydrophilic areas, while they appear scattered or even absent in hydrophobic regions, depending on the dimension of the hydrophobic area. While at the hydrophilic/hydrophobic boundary, a noticeable scale thickness step is observed, which raises the potential for self-cleaning. The balance of minimization of scaling layer coverage and maximization of wetting area requires an optimal design in coating dimensions, for which a systemic study of both flow dynamics and fouling characteristics on the falling film is necessary in the future.

References

1.
Müller-Steinhagen
,
H.
,
Malayeri
,
M.
, and
Watkinson
,
A.
,
2005
, “
Fouling of Heat Exchangers-New Approaches to Solve an Old Problem
,”
Heat Transfer Eng.
,
26
(
1
), pp.
1
4
.10.1080/01457630590889906
2.
Epstein
,
N.
,
1983
, “
Thinking About Heat Transfer Fouling: A 5× 5 Matrix
,”
Heat Transfer Eng.
,
4
(
1
), pp.
43
56
.10.1080/01457638108939594
3.
Bott
,
T. R.
,
1997
, “
Aspects of Crystallization Fouling
,”
Exp. Thermal Fluid Sci.
,
14
(
4
), pp.
356
360
.10.1016/S0894-1777(96)00137-9
4.
Jin
,
H.-Q.
,
Shahane
,
S.
,
Zhang
,
Y.
,
Wang
,
S.
, and
Nawaz
,
K.
,
2021
, “
Modeling of Crystallization Fouling on a Horizontal-Tube Falling-Film Evaporator for Thermal Desalination
,”
Int. J. Heat Mass Transfer
,
178
, p.
121596
.10.1016/j.ijheatmasstransfer.2021.121596
5.
Ribatski
,
G.
, and
Jacobi
,
A. M.
,
2005
, “
Falling-Film Evaporation on Horizontal Tubes—a Critical Review
,”
Int. J. Refrig.
,
28
(
5
), pp.
635
653
.10.1016/j.ijrefrig.2004.12.002
6.
Dai
,
Z.
,
Zhang
,
Y.
,
Wang
,
S.
,
Nawaz
,
K.
, and
Jacobi
,
A.
,
2022
, “
Falling-Film Heat Exchangers Used in Desalination Systems: A Review
,”
Int. J. Heat Mass Transfer
,
185
, p.
122407
.10.1016/j.ijheatmasstransfer.2021.122407
7.
Wang
,
X.
, and
Jacobi
,
A. M.
,
2014
, “
A Thermodynamic Basis for Predicting Falling-Film Mode Transitions
,”
Int. J. Refrig.
,
43
, pp.
123
132
.10.1016/j.ijrefrig.2014.04.002
8.
Wang
,
X.
,
Hrnjak
,
P. S.
,
Elbel
,
S.
,
Jacobi
,
A. M.
, and
He
,
M.
,
2013
, “
Heat Transfer Performance for a Falling-Film on Horizontal Flat Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
7
), p.
072901
.10.1115/1.4023689
9.
Stärk
,
A.
,
Krömer
,
K.
,
Loisel
,
K.
,
Odiot
,
K.
,
Nied
,
S.
, and
Glade
,
H.
,
2017
, “
Impact of Tube Surface Properties on Crystallization Fouling in Falling Film Evaporators for Seawater Desalination
,”
Heat Transfer Eng.
,
38
(
7–8
), pp.
762
774
.10.1080/01457632.2016.1206418
10.
Christmann
,
J. B.
,
Krätz
,
L. J.
, and
Bart
,
H.-J.
,
2010
, “
Novel Polymer Film Heat Exchangers for Seawater Desalination
,”
Desalin. Water Treat.
,
21
(
1–3
), pp.
162
174
.10.5004/dwt.2010.1325
11.
Al-Janabi
,
A.
,
Malayeri
,
M.
, and
Müller-Steinhagen
,
H.
,
2010
, “
Experimental Fouling Investigation With Electroless Ni–P Coatings
,”
Int. J. Thermal Sci.
,
49
(
6
), pp.
1063
1071
.10.1016/j.ijthermalsci.2009.05.009
12.
Zhang
,
T.
,
Wang
,
Y.
,
Zhang
,
F.
,
Chen
,
X.
,
Hu
,
G.
,
Meng
,
J.
, and
Wang
,
S.
,
2018
, “
Bio-Inspired Superhydrophilic Coatings With High Anti-Adhesion Against Mineral Scales
,”
NPG Asia Mater.
,
10
(
3
), pp.
e471
e471
.10.1038/am.2017.224
13.
Qi
,
C-h.
,
Han
,
X.
,
Lv
,
H-Q.
,
Xing
,
Y-L.
, and
Han
,
K-X.
,
2018
, “
Experimental Study of Heat Transfer and Scale Formation of Spiral Grooved Tube in the Falling Film Distilled Desalination
,”
Int. J. Heat Mass Transfer
,
119
, pp.
654
664
.10.1016/j.ijheatmasstransfer.2017.11.148
14.
Jin
,
H.-Q.
,
Athreya
,
H.
,
Wang
,
S.
, and
Nawaz
,
K.
,
2022
, “
Experimental Study of Crystallization Fouling by Calcium Carbonate: Effects of Surface Structure and Material
,”
Desalination
,
532
, p.
115754
.10.1016/j.desal.2022.115754
15.
Zhang
,
J.
,
Zhang
,
Y.
,
Yong
,
J.
,
Hou
,
X.
, and
Chen
,
F.
,
2022
, “
Femtosecond Laser Direct Weaving Bioinspired Superhydrophobic/Hydrophilic Micro-Pattern for Fog Harvesting
,”
Opt. Laser Technol.
,
146
, p.
107593
.10.1016/j.optlastec.2021.107593
16.
Cholkar
,
A.
,
McCann
,
R.
,
Perumal
,
G.
,
Chatterjee
,
S.
,
Swayne
,
M.
,
Kinahan
,
D.
, and
Brabazon
,
D.
,
2023
, “
Advances in Laser-Based Surface Texturing for Developing Antifouling Surfaces: A Comprehensive Review
,”
Appl. Surf. Sci. Adv.
,
18
, p.
100513
.10.1016/j.apsadv.2023.100513
17.
Alwazzan
,
M.
,
Egab
,
K.
,
Peng
,
B.
,
Khan
,
J.
, and
Li
,
C.
,
2017
, “
Condensation on Hybrid-Patterned Copper Tubes (I): Characterization of Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
112
, pp.
991
1004
.10.1016/j.ijheatmasstransfer.2017.05.039
18.
Peng
,
B.
,
Ma
,
X.
,
Lan
,
Z.
,
Xu
,
W.
, and
Wen
,
R.
,
2015
, “
Experimental Investigation on Steam Condensation Heat Transfer Enhancement With Vertically Patterned Hydrophobic–Hydrophilic Hybrid Surfaces
,”
Int. J. Heat Mass Transfer
,
83
, pp.
27
38
.10.1016/j.ijheatmasstransfer.2014.11.069
19.
Zhao
,
N.
,
Li
,
M.
,
Gong
,
H.
, and
Bai
,
H.
,
2020
, “
Controlling Ice Formation on Gradient Wettability Surface for High-Performance Bioinspired Materials
,”
Sci. Adv.
,
6
(
31
), p.
eabb4712
.10.1126/sciadv.abb4712
20.
Jin
,
H.-Q.
,
Athreya
,
H.
,
Kalle
,
A.
,
Wang
,
S.
, and
Nawaz
,
K.
,
2023
, “
CFD Modeling of Crystallization Fouling With CO2 Desorption Incorporated for a Falling-Film Evaporator in Thermal Desalination
,”
Desalination
,
553
, p.
116456
.10.1016/j.desal.2023.116456
21.
Vakarelski
,
I. U.
,
Patankar
,
N. A.
,
Marston
,
J. O.
,
Chan
,
D. Y.
, and
Thoroddsen
,
S. T.
,
2012
, “
Stabilization of Leidenfrost Vapour Layer by Textured Superhydrophobic Surfaces
,”
Nature
,
489
(
7415
), pp.
274
277
.10.1038/nature11418
22.
Allred
,
T. P.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Enabling Highly Effective Boiling From Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
120
(
17
), p.
174501
.10.1103/PhysRevLett.120.174501
23.
Ma
,
J.
,
Porath
,
L. E.
,
Haque
,
M. F.
,
Sett
,
S.
,
Rabbi
,
K. F.
,
Nam
,
S.
,
Miljkovic
,
N.
, and
Evans
,
C. M.
,
2021
, “
Ultra-Thin Self-Healing Vitrimer Coatings for Durable Hydrophobicity
,”
Nat. Commun.
,
12
(
1
), p.
5210
.10.1038/s41467-021-25508-4
You do not currently have access to this content.