Abstract

Flow boiling in mini and microchannels has become an attractive option for many applications, such as compact and low-charge heat exchangers. Microchannel heat exchangers, however, are more susceptible to maldistribution between parallel flow channels. When operating during uneven heat load conditions, the maldistribution becomes even more severe. Electrohydrodynamic (EHD) conduction pumping technology offers an innovative way to redistribute flow between parallel branches in a microchannel heat exchanger and is also being explored as a next-generation mechanism of microgravity heat transport. In EHD conduction pumping, a strong electric field interacts with dissociated electrolytes in dielectric fluid to generate a net body force, and thus, a net flow, with no moving parts, no acoustical noise, lower power consumption, and the ability to operate in microgravity. An EHD conduction pump was designed, fabricated, and tested for upstream flow distribution control of a parallel microchannel evaporator in an opposing configuration. Flow redistribution capability was measured at system flowrates up to 6 ml/min. The EHD conduction pump was capable of completely blocking and reversing the flow in its branch. Recovery from near-critical heat flux conditions up to a maximum heat flux of 77.5 W/cm2 was also demonstrated for the operating conditions and design of this study. This was achieved in the absence of enhanced surfaces. The working fluid is HFE 7100. The results show that EHD conduction is able to effectively control the flow distribution of the microchannel evaporator, however, its effectiveness decreases with increasing heat flux and flowrate.

References

1.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,” ASME/JSME Thermal Engineering Joint Conference, Vol. 38921, p. T40001.
2.
Mueller
,
A.
, and
Chiou
,
J.
,
1988
, “
Review of Various Types of Flow Maldistribution in Heat Exchangers
,”
Heat Transfer Eng.
,
9
(
2
), pp.
36
50
.10.1080/01457638808939664
3.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
4.
Kandlikar
,
S
, et al
2005
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
, Oxford, UK.
5.
Zou
,
Y.
,
Li
,
H.
, and
Hrnjak
,
P. S.
,
2014
, “
R134a and PAG Oil Maldistribution and Its Impact on Microchannel Heat Exchanger Performance
,”
ASHRAE Winter Conference
,
New York
,
ASHRAE Transactions
, New York.
6.
Brix
,
W.
,
Kærn
,
M. R.
, and
Elmegaard
,
B.
,
2010
, “
Modelling Distribution of Evaporating CO2 in Parallel Minichannels
,”
Int. J. Refrig.
,
33
(
6
), pp.
1086
1094
.10.1016/j.ijrefrig.2010.04.012
7.
Byun
,
H.-W.
, and
Kim
,
N.-H.
,
2016
, “
Two-Phase Refrigerant Distribution in a Two Row/Four Pass Parallel Flow Minichannel Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
10
27
.10.1016/j.expthermflusci.2016.04.003
8.
Chng
,
M.
,
Chin
,
W.
, and
Tang
,
S.
,
2017
, “
Analysis on the Refrigerant (R32) Flow Maldistribution of Microchannel Heat Exchanger Under Superheat and Sub-Cool
,”
Int. J. Automot. Mech. Eng.
,
14
(
2
), pp.
4140
4157
.10.15282/ijame.14.2.2017.3.0332
9.
Rendall
,
J.
,
Turnaoglu
,
T.
, and
Patel
,
V. K.
,
2022
, “
Experimental Results of a Magnetically Coupled Piezoelectric Actuator to Relieve Microchannel Heat Exchanger Maldistribution
,”
Int. Commun. Heat Mass Transfer
,
133
, p.
105944
.10.1016/j.icheatmasstransfer.2022.105944
10.
Melcher
,
J. R.
,
1981
,
Continuum Electromechanics
, Vol.
2
,
MIT Press
,
Cambridge, MA
.
11.
Jeong
,
S.-I.
,
Seyed-Yagoobi
,
J.
, and
Atten
,
P.
,
2003
, “
Theoretical/Numerical Study of Electrohydrodynamic Pumping Through Conduction Phenomenon
,”
IEEE Trans. Ind. Appl.
,
39
(
2
), pp.
355
361
.10.1109/TIA.2003.808954
12.
Atten
,
P.
, and
Seyed-Yagoobi
,
J.
,
2003
, “
Electrohydrodynamically Induced Dielectric Liquid Flow Through Pure Conduction in Point/Plane Geometry
,”
IEEE Trans. Dielectrics Electr. Insul.
,
10
(
1
), pp.
27
36
.10.1109/TDEI.2003.1176555
13.
Peng
,
Y.
,
Li
,
D.
,
Yang
,
X.
,
Ma
,
Z.
, and
Mao
,
Z.
,
2023
, “
A Review on Electrohydrodynamic (EHD) Pump
,”
Micromachines
,
14
(
2
), p.
321
.10.3390/mi14020321
14.
Patel
,
V. K.
,
Robinson
,
F.
,
Seyed-Yagoobi
,
J.
, and
Didion
,
J.
,
2013
, “
Terrestrial and Microgravity Experimental Study of Microscale Heat-Transport Device Driven by Electrohydrodynamic Conduction Pumping
,”
IEEE Trans. Ind. Appl.
,
49
(
6
), pp.
2397
2401
.10.1109/TIA.2013.2264042
15.
Castaneda
,
A. J.
,
O'Connor
,
N. J.
,
Yagoobi
,
J. S.
,
Didion
,
J. R.
,
Martins
,
M. S.
, and
Hasan
,
M. M.
,
2023
, “
Dielectrophoretically-Assisted Electrohydrodynamic-Driven Liquid Film Flow Boiling in the Presence and Absence of Gravity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
3
), p.
031601
.10.1115/1.4055566
16.
Feng
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2004
, “
Control of Liquid Flow Distribution Utilizing EHD Conduction Pumping Mechanism
,”
Conference Record of the 2004 IEEE Industry Applications Conference. 39th IAS Annual Meeting
, Seattle, WA, pp.
2345
2352
.
17.
Feng
,
Y.
, and
Seyed-Yagoobi
,
J.
,
2006
, “
Control of Adiabatic Two-Phase Dielectric Fluid Flow Distribution With EHD Conduction Pumping
,”
J. Electrostatics
,
64
(
7–9
), pp.
621
627
.10.1016/j.elstat.2005.10.034
18.
Du
,
Z.
,
Huang
,
J.
,
Liu
,
Q.
,
Deepak Selvakumar
,
R.
, and
Wu
,
J.
,
2021
, “
Numerical Investigation on Electrohydrodynamic Conduction Pumping With an External Flow
,”
Phys. Fluids
,
33
(
12
), p.
123609
.10.1063/5.0069462
19.
Talmor
,
M.
, and
Seyed-Yagoobi
,
J.
,
2021
, “
Numerical Study of Micro-Scale EHD Conduction Pumping: The Effect of Pump Orientation and Flow Inertia on Heterocharge Layer Morphology and Flow Distribution Control
,”
J. Electrostatics
,
111
, p.
103548
.10.1016/j.elstat.2020.103548
20.
Yang
,
L.
,
Talmor
,
M.
,
Shaw
,
B. C.
,
Minchev
,
K. S.
,
Jiang
,
C.
, and
Seyed-Yagoobi
,
J.
,
2017
, “
Flow Distribution Control in Meso Scale Via Electrohydrodynamic Conduction Pumping
,”
IEEE Trans. Ind. Appl.
,
53
(
2
), pp.
1431
1438
.10.1109/TIA.2016.2626358
21.
Yang
,
L.
,
Talmor
,
M.
, and
Seyed-Yagoobi
,
J.
,
2016
, “
Flow Distribution Control Between Two Parallel Meso-Scale Evaporators With Electrohydrodynamic Conduction Pumping
,”
ASME
Paper No. IMECE2016-66222. 10.1115/IMECE2016-66222
22.
Li
,
W.
,
Ma
,
J.
,
Alam
,
T.
,
Yang
,
F.
,
Khan
,
J.
, and
Li
,
C.
,
2018
, “
Flow Boiling of HFE-7100 in Silicon Microchannels Integrated With Multiple Micro-Nozzles and Reentry Micro-Cavities
,”
Int. J. Heat Mass Transfer
,
123
, pp.
354
366
.10.1016/j.ijheatmasstransfer.2018.02.108
23.
Iverson
,
B. D.
, and
Garimella
,
S. V.
,
2009
, “
Experimental Characterization of Induction Electrohydrodynamics for Integrated Microchannel Pumping
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055015
.10.1088/0960-1317/19/5/055015
24.
Nishikawara
,
M.
, and
Yagoobi
,
J.
,
2020
, “
Experimental Study of Electrohydrodynamic Conduction Pumping Embedded in Micro-Scale Evaporator
,”
IEEE Industry Applications Society Annual Meeting
, Detroit, MI, Oct. 10-16, Paper No. 2020-EPC-1101.10.1109/IAS44978.2020.9334813
25.
Kano
,
I.
, and
Nishina
,
T.
,
2010
, “
Electrode Arrangement for Micro-Scale Electrohydrodynamic Pumping
,”
J. Fluid Sci. Technol.
,
5
(
2
), pp.
123
134
.10.1299/jfst.5.123
26.
Pearson
,
M. R.
, and
Seyed-Yagoobi
,
J.
,
2013
, “
Electrohydrodynamic Conduction Driven Single-and Two-Phase Flow in Microchannels With Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans.
,
135
(
10
) p.
101701
.10.1115/1.4007617
27.
Talmor
,
M.
, et al.,
2016
, “
Flow Distribution Control in Micro-Scale Via Electrohydrodynamic Conduction Pumping
,”
Proceeding of Electrostatics Joint Conference
, West Lafayette, IN.
28.
Patel
,
V. K.
, and
Seyed-Yagoobi
,
J.
,
2011
, “
Dielectric Fluid Flow Generation in Meso-Tubes With Micro-Scale Electrohydrodynamic Conduction Pumping
,”
IEEE International Conference on Dielectric Liquids
, Trondheim, Norway, pp.
1
4
.10.1109/ICDL.2011.6015419
29.
O'Connor
,
N. J.
,
Castaneda
,
A. J.
,
Christidis
,
P. N.
,
Vayas Tobar
,
N.
,
Talmor
,
M.
, and
Yagoobi
,
J.
,
2020
, “
Experimental Study of Flexible Electrohydrodynamic Conduction Pumping for Electronics Cooling
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041105
.10.1115/1.4047459
30.
Vázquez
,
P. A.
,
Talmor
,
M.
,
Seyed-Yagoobi
,
J.
,
Traoré
,
P.
, and
Yazdani
,
M.
,
2019
, “
In-Depth Description of Electrohydrodynamic Conduction Pumping of Dielectric Liquids: Physical Model and Regime Analysis
,”
Phys. Fluids
,
31
(
11
), p.
113601
.10.1063/1.5121164
31.
Nassar
,
M.
,
Vazquez
,
P. A.
,
Chauris
,
N.
,
Daaboul
,
M.
,
Michel
,
A.
, and
Louste
,
C.
,
2020
, “
Experimental Models of the Variation of HFE-7100 and HFE-7000 Electric Properties With Temperature
,”
IEEE Trans. Ind. Appl.
,
56
(
4
), pp.
4193
4199
.10.1109/TIA.2020.2990367
32.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2010
, “
A Comprehensive Flow Regime Map for Microchannel Flow Boiling With Quantitative Transition Criteria
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2694
2702
.10.1016/j.ijheatmasstransfer.2010.02.039
33.
Al-Zaidi
,
A. H.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2019
, “
Flow Boiling of HFE-7100 in Microchannels: Experimental Study and Comparison With Correlations
,”
Int. J. Heat Mass Transfer
,
140
, pp.
100
128
.10.1016/j.ijheatmasstransfer.2019.05.095
34.
Rausch
,
M. H.
,
Kretschmer
,
L.
,
Will
,
S.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
,
2015
, “
Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500
,”
J. Chem. Eng. Data
,
60
(
12
), pp.
3759
3765
.10.1021/acs.jced.5b00691
You do not currently have access to this content.