Abstract

Houston's method for summing phonon modes in the Brillouin zone is applied to exclude specular transmission of phonon modes of specific symmetries, thus, modifying the Acoustic Mismatch Model when phonon heat flux is incident from a heavier to a lighter medium. The Houston method is also used to impose conservation of the number of phonons in each direction of high-symmetry, thus modifying the detailed balance theorem and the Diffuse Mismatch Model. Based on the assumption that phonons are in equilibrium at the interface and are transmitted specularly or diffusely by two-phonon elastic processes, interpolation between the modified Acoustic Mismatch Model and the modified Diffuse Mismatch Model has led to a general analytical formalism for low-temperature interface thermal conductance. The Debye temperature, the only parameter in the derived formalism, is expressed as a function of temperature by assimilating numerically obtained specific heat values to the Debye expression for specific heat. Previous measurements of the low-temperature thermal conductance of smooth and rough interfaces between dissimilar materials could be reproduced numerically without adjustment of model parameters, demonstrating the importance of modifications to the Acoustic Mismatch Model and the Diffuse Mismatch Model and supporting the hypothesis that anharmonic processes play a minimal role in heat transport across the interfaces studied below room temperature. The formalism developed is used to study the thermal conductance of the interface between silicon and germanium because of the potential of silicon-germanium nanocomposites for thermoelectric applications.

References

1.
Moore
,
G. E.
,
1998
, “
Cramming More Components Onto Integrated Circuits
,”
Proc. IEEE
,
86
(
1
), pp.
82
85
.10.1109/JPROC.1998.658762
2.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.10.1126/science.1158899
3.
Biswas
,
K.
,
He
,
J. Q.
,
Blum
,
I. D.
,
Wu
,
C. –I.
,
Hogan
,
T. P.
,
Seidman
,
D. N.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2012
, “
High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures
,”
Nature
,
490
(
7421
), pp.
570
570
.10.1038/nature11645
4.
Zhao
,
L. D.
,
Wu
,
H. J.
,
Hao
,
S. Q.
,
Wu
,
C. I.
,
Zhou
,
X. Y.
,
Biswas
,
K.
,
He
,
J. Q.
,
Hogan
,
T. P.
,
Uher
,
C.
,
Wolverton
,
C.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2013
, “
All-Scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance
,”
Energy Environ. Sci.
,
6
(
11
), p.
3346
.10.1039/c3ee42187b
5.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
(
2
), pp.
105
114
.10.1038/nmat2090
6.
Shang
,
H.
,
Liang
,
Z.
,
Xu
,
C.
,
Song
,
S.
,
Huang
,
D.
,
Gu
,
H.
,
Mao
,
J.
,
Ren
,
Z.
, and
Ding
,
F.
,
2020
, “
N-Type Mg3Sb2-xBix With Improved Thermal Stability for Thermoelectric Power Generation
,”
Acta Mater.
,
201
, pp.
572
579
.10.1016/j.actamat.2020.10.035
7.
Hori
,
A.
,
Minami
,
S.
,
Saito
,
M.
, and
Ishii
,
F.
,
2020
, “
First-Principles Calculation of Lattice Thermal Conductivity and Thermoelectric Figure of Merit in Ferromagnetic half-Heusler Alloy CoMnSb
,”
Appl. Phys. Lett.
,
116
, p.
242408
.10.1063/1.5143038
8.
Alqurashi
,
H.
,
Haleoot
,
R.
, and
Hamad
,
B.
,
2022
, “
First-Principles Investigations of the Electronic, Magnetic and Thermoelectric Properties of VTiRhZ (Z=Al, Ga, in) Quaternary Heusler Alloys
,”
Mater. Chem. Phys.
,
278
, p.
125685
.10.1016/j.matchemphys.2021.125685
9.
Kang
,
H.
,
Yang
,
Z.
,
Yang
,
X.
,
Li
,
J.
,
He
,
W.
,
Chen
,
Z.
,
Guo
,
E.
,
Zhao
,
L. –D.
, and
Wang
,
T.
,
2021
, “
Preparing Bulk Cu-Ni-Mn Based Thermoelectric Alloys and Synergistically Improving Their Thermoelectric and Mechanical Properties Using Nanotwins and Nanoprecipitates
,”
Mater. Today Phys.
,
17
, p.
100332
.10.1016/j.mtphys.2020.100332
10.
Iskandar
,
A.
,
Abou-Khalil
,
A.
,
Kazan
,
M.
,
Kassem
,
W.
, and
Volz
,
S.
,
2015
, “
On the Interplay Between Phonon-Boundary Scattering and Phonon-Point-Defect Scattering in SiGe Thin Films
,”
J. Appl. Phys.
,
117
, p.
125102
.10.1063/1.4915948
11.
Kazan
,
M.
, and
Volz
,
S.
,
2014
, “
Calculation of the Lattice Thermal Conductivity in Granular Crystals
,”
J. Appl. Phys.
,
115
, p.
073509
.10.1063/1.4866362
12.
Klemens
,
P. G.
,
1958
, “
Thermal Conductivity and Lattice Vibrational Modes
,”
Solid State Phys.
,
7
, p.
1
.10.1016/S0081-1947(08)60551-2
13.
Srivastava
,
G. P.
,
1990
,
The Physics of Phonon
,
Hilger
,
Bristol, UK
.
14.
Little
,
W.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
(
3
), pp.
334
349
.10.1139/p59-037
15.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1987
, “
Thermal Resistance at Interfaces
,”
Appl. Phys. Lett.
,
51
(
26
), pp.
2200
2202
.10.1063/1.98939
16.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
17.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
,
2005
, “
Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion
,”
Appl. Phys. Lett.
,
87
, p.
211908
.10.1063/1.2133890
18.
Ran
,
X.
, and
Wang
,
M.
,
2022
, “
A Steady-State Energy-Based Monte Carlo Method for Phonon Transport With Arbitrary Temperature Difference
,”
ASME J. Heat Mass Transfer-Trans.
,
144
, p.
082502
.10.1115/1.4054577
19.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
,”
Numer. Heat Transfer, Part B
,
51
(
4
), pp.
333
349
.10.1080/10407790601144755
20.
Mingo
,
N.
, and
Yang
,
L.
,
2003
, “
Phonon Transport in Nanowires Coated With an Amorphous Material: An Atomistic Green's Function Approach
,”
Phys. Rev. B
,
68
(
24
), p.
245406
.10.1103/PhysRevB.68.245406
21.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2007
, “
Simulation of Interfacial Phonon Transport in Si-Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Mass Transfer-Trans.
,
129
(
4
), pp.
483
491
.10.1115/1.2709656
22.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With Green's Function Method
,”
Phys. Rev. B
,
86
(
23
), p.
235304
.10.1103/PhysRevB.86.235304
23.
Li
,
X.
, and
Yang
,
R.
,
2012
, “
Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces
,”
J. Phys. Condens. Matter
,
24
(
15
), p.
155302
.10.1088/0953-8984/24/15/155302
24.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2004
, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
,
95
(
11
), pp.
6082
6091
.10.1063/1.1702100
25.
Baker
,
C. H.
,
Jordan
,
D. A.
, and
Norris
,
P. M.
,
2012
, “
Application of the Heat Wavelet Transform to Nanoscale Thermal Transport
,”
Phys. Rev. B
,
86
(
10
), p.
104306
.10.1103/PhysRevB.86.104306
26.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
(
14
), pp.
2484
2486
.10.1063/1.1465106
27.
Roberts
,
N. A.
, and
Walker
,
D. G.
,
2010
, “
Phonon Wave-Packet Simulations of Ar/Kr Interfaces for Thermal Rectification
,”
J. Appl. Phys.
,
108
, p.
123515
.10.1063/1.3517159
28.
Shi
,
J.
,
Lee
,
J.
,
Dong
,
Y.
,
Roy
,
A.
,
Fisher
,
T. S.
, and
Ruan
,
X.
,
2018
, “
Dominant Phonon Polarization Conversion Across Dimensionally Mismatched Interfaces: Carbon-Nanotube-Graphene Junction
,”
Phys. Rev. B
,
97
(
13
), p.
134309
.10.1103/PhysRevB.97.134309
29.
Chalopin
,
Y.
, and
Volz
,
S.
,
2013
, “
A Microscopic Formulation of the Phonon Transmission at the Nanoscale
,”
Appl. Phys. Lett.
,
103
, p.
051602
.10.1063/1.4816738
30.
Chalopin
,
Y.
,
Rajabpour
,
A.
,
Han
,
H.
,
Ni
,
Y.
, and
Volz
,
S.
,
2014
, “
Equilibrium Molecular Dynamics Simulations on Interfacial Phonon Transport
,”
Ann. Rev. Heat Transfer
,
17
(
N/A
), pp.
147
176
.10.1615/AnnualRevHeatTransfer.2014007292
31.
Zhou
,
Y.
, and
Hu
,
M.
,
2017
, “
Full Quantification of Frequency-Dependent Interfacial Thermal Conductance Contributed by Two- and Three-Phonon Scattering Processes From Nonequilibrium Molecular Dynamics Simulations
,”
Phys. Rev. B
,
95
(
11
), p.
115313
.10.1103/PhysRevB.95.115313
32.
Murakami
,
T.
,
Hori
,
T.
,
Shiga
,
T.
, and
Shiomi
,
J.
,
2014
, “
Probing and Tuning Inelastic Phonon Conductance Across Finite-Thickness Interface
,”
Appl. Phys. Express
,
7
(
12
), p.
121801
.10.7567/APEX.7.121801
33.
Giri
,
A.
,
Braun
,
J. L.
, and
Hopkins
,
P. E.
,
2016
, “
Implications of Interfacial Bond Strength on the Spectral Contributions to Thermal Boundary Conductance Across Solid, Liquid, and Gas Interfaces: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
120
(
43
), pp.
24847
24856
.10.1021/acs.jpcc.6b08124
34.
Gordiz
,
K.
, and
Henry
,
A.
,
2016
, “
Phonon Transport at Interfaces: Determining the Correct Modes of Vibration
,”
J. Appl. Phys.
,
119
, p.
015101
.10.1063/1.4939207
35.
Feng
,
T.
,
Zhong
,
Y.
,
Shi
,
J.
, and
Ruan
,
X.
,
2019
, “
Unexpected High Inelastic Phonon Transport Across Solid-Solid Interface: Modal Nonequilibrium Molecular Dynamics Simulations and Landauer Analysis
,”
Phys. Rev. B
,
99
(
4
), p.
045301
.10.1103/PhysRevB.99.045301
36.
Liang
,
Z.
, and
Hu
,
M.
,
2018
, “
Tutorial: Determination of Thermal Boundary Resistance by Molecular Dynamics Simulations
,”
J. Appl. Phys.
,
123
, p.
191101
.10.1063/1.5027519
37.
Wang
,
Z.
,
2020
, “
A Molecular Dynamics Study of the Thermal Transport in Silicon/Germanium Nanostructures: From Cross-Plane to in-Plane
,”
Mater. Today Commun.
,
22
, p.
100822
.10.1016/j.mtcomm.2019.100822
38.
Chen
,
J.
,
Xu
,
X.
,
Zhou
,
J.
, and
Li
,
B.
,
2022
, “
Interfacial Thermal Resistance: Past, Present, and Future
,”
Rev. Mod. Phys.
,
94
(
2
), p.
025002
.10.1103/RevModPhys.94.025002
39.
Giri
,
A.
, and
Hopkins
,
P. E.
,
2019
, “
A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport Across Solid Interfaces
,”
Adv. Funct. Mater
,
30
, p.
1903857
.10.1002/adfm.201903857
40.
Monachon
,
C.
,
Weber
,
L.
, and
Dames
,
C.
,
2016
, “
Thermal Boundary Conductance: A Materials Science Perspective
,”
Annu. Rev. Matter. Res.
,
46
(
1
), pp.
433
463
.10.1146/annurev-matsci-070115-031719
41.
Xie
,
R.
,
Tiwari
,
J.
, and
Feng
,
T.
,
2022
, “
Impacts of Various Interfacial Nanostructures on Spectral Phonon Thermal Boundary Conductance
,”
J. Appl. Phys.
,
132
, p.
115108
.10.1063/5.0106685
42.
Zhao
,
J. –W.
,
Zhao
,
R.
,
Huo
,
Y. –K.
, and
Cheng
,
W. –L.
,
2019
, “
Effects of Surface Roughness, Temperature and Pressure on Interface Thermal Resistance of Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
140
, pp.
705
716
.10.1016/j.ijheatmasstransfer.2019.06.045
43.
Merabia
,
S.
, and
Termentzidis
,
K.
,
2014
, “
Thermal Boundary Conductance Across Rough Interfaces Probed by Molecular Dynamics
,”
Phys. Rev. B
,
89
(
5
), p.
054309
.10.1103/PhysRevB.89.054309
44.
Sun
,
L.
, and
Murthy
,
J. Y.
,
2010
, “
Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces
,”
ASME J. Heat Mass Transfer-Trans.
,
132
, p.
102403
.10.1115/1.4001912
45.
Gordiz
,
K.
, and
Henry
,
A.
,
2016
, “
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
,”
Sci. Rep.
,
6
(
1
), p.
23139
.10.1038/srep23139
46.
Ovsyannikov
,
D. A.
,
Popov
,
M. Y.
,
Buga
,
S. G.
,
Kirichenko
,
A. N.
,
Tarelkin
,
S. A.
,
Aksenenkov
,
V. V.
,
Tat'yanin
,
E. V.
, and
Blank
,
V. D.
,
2015
, “
Transport Properties of Nanocomposite Thermoelectric Materials Based on Si and Ge
,”
Phys. Solid State
,
57
(
3
), pp.
605
612
.10.1134/S1063783415030208
47.
Bux
,
S. K.
,
Blair
,
R. G.
,
Gogna
,
P. K.
,
Lee
,
H.
,
Chen
,
G.
,
Dresselhaus
,
M. S.
,
Kaner
,
R. B.
, and
Fleurial
,
J. –P.
,
2009
, “
Nanostructured Bulk Silicon as an Effective Thermoelectric Material
,”
Adv. Funct. Mater.
,
19
(
15
), pp.
2445
2452
.10.1002/adfm.200900250
48.
Aksamija
,
Z.
,
2015
, “
Lattice Thermal Transport in Si-Based Nanocomposites for Thermoelectric Applications
,”
J. Electron. Mater.
,
44
(
6
), pp.
1644
1650
.10.1007/s11664-014-3505-7
49.
Zhu
,
G. H.
,
Lee
,
H.
,
Lan
,
Y. C.
,
Wang
,
X. W.
,
Joshi
,
G.
,
Wang
,
D. Z.
,
Yang
,
J.
,
Vashaee
,
D.
,
Guilbert
,
H.
,
Pillitteri
,
A.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z. F.
,
2009
, “
Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon With a Low Concentration of Germanium
,”
Phys. Rev. Lett.
,
102
(
19
), p.
196803
.10.1103/PhysRevLett.102.196803
50.
Hua
,
C.
, and
Minnich
,
A. J.
,
2014
, “
Importance of Frequency-Dependent Grain Boundary Scattering in Nanocrystalline Silicon and Silicon-Germanium Thermoelectrics
,”
Semicond. Sci. Technol.
,
29
(
12
), p.
124004
.10.1088/0268-1242/29/12/124004
51.
Lyeo
,
H. –K.
, and
Cahill
,
D. G.
,
2006
, “
Thermal Conductance of Interfaces Between Highly Dissimilar Materials
,”
Phys. Rev. B
,
73
(
14
), p.
144301
.10.1103/PhysRevB.73.144301
52.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
2011
, “
Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
6
), p.
062401
.10.1115/1.4003549
53.
Eisenmenger
,
W.
,
1986
,
Phonon Scattering in Condensed Matter V
,
A. C.
Anderson
, and
J. P.
Wolfe
, ed.,
Springer
,
Berlin, Germany
, p.
194
.
54.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2007
, “
Effects of Joint Vibrational States on Thermal Boundary Conductance
,”
Nanoscale Microscale Thermophys. Eng.
,
11
(
3–4
), pp.
247
257
.10.1080/15567260701715297
55.
Hopkins
,
P. E.
,
2009
, “
Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces
,”
J. Appl. Phys.
,
106
, p.
013528
.10.1063/1.3169515
56.
Shin
,
S.
,
Kaviany
,
M.
,
Desai
,
T.
, and
Bonner
,
R.
,
2010
, “
Roles of Atomic Restructuring in Interfacial Phonon Transport
,”
Phys. Rev. B
,
82
(
8
), p.
081302(R)
.10.1103/PhysRevB.82.081302
57.
Sadasivam
,
S.
,
Ye
,
N.
,
Feser
,
J. P.
,
Charles
,
J.
,
Miao
,
K.
,
Kubis
,
T.
, and
Fisher
,
T. S.
,
2017
, “
Thermal Transport Across Metal Silicide-Silicon Interfaces: First-Principles Calculations and Green's Function Transport Simulations
,”
Phys. Rev. B
,
95
(
8
), p.
085310
.10.1103/PhysRevB.95.085310
58.
Montroll
,
E. W.
, and
Potts
,
R. B.
,
1955
, “
Effect of Defects on Lattice Vibrations
,”
Phys. Rev.
,
100
(
2
), pp.
525
543
.10.1103/PhysRev.100.525
59.
Klemens
,
P. G.
,
1961
, “
Anharmonic Attenuation of Localized Lattice Vibrations
,”
Phys. Rev.
,
122
(
2
), pp.
443
445
.10.1103/PhysRev.122.443
60.
Kazan
,
M.
,
2017
, “
Application of Houston's Method to the Calculation of the Direction-Dependent Thermal Conductivity in Finite Crystals at Low Temperatures
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
10
), p.
102004
.10.1115/1.4036601
61.
Houston
,
W. V.
,
1948
, “
Normal Vibrations of a Crystal Lattice
,”
Rev. Mod. Phys.
,
20
(
1
), pp.
161
165
.10.1103/RevModPhys.20.161
62.
Betts
,
D. D.
,
Bhatia
,
A. B.
, and
Wyman
,
M.
,
1956
, “
Houston's Method and Its Application to the Calculation of Characteristic Temperatures of Cubic Crystals
,”
Phys. Rev.
,
104
(
1
), pp.
37
42
.10.1103/PhysRev.104.37
63.
Bhatia
,
A. B.
, and
Horton
,
G. K.
,
1955
, “
Vibration Spectra and Specific Heats of Cubic Metals. II. Application to Silver
,”
Phys. Rev.
,
98
(
6
), pp.
1715
1721
.10.1103/PhysRev.98.1715
64.
Iskandar
,
A.
,
Gwiazda
,
A.
,
Huang
,
Y.
,
Kazan
,
M.
,
Bruyant
,
A.
,
Tabbal
,
M.
, and
Lerondel
,
G.
,
2016
, “
Modification of the Phonon Spectrum of Bulk Si Through Surface Nanostructuring
,”
J. Appl. Phys.
,
120
, p.
095106
.10.1063/1.4962208
65.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity of Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
(
19
), pp.
2761
2763
.10.1063/1.120126
66.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
4
), pp.
945
953
.10.1115/1.2826085
67.
Soffer
,
S. B.
,
1967
, “
Statistical Model for the Size Effect in Electrical Conduction
,”
J. Appl. Phys.
,
38
(
4
), pp.
1710
1715
.10.1063/1.1709746
68.
Auld
,
B. A.
,
1990
,
Acoustic Fields and Waves in Solids
, 2nd ed.,
Krieger
,
Melbourne, FL
.
69.
Kazan
,
M.
,
2011
, “
Interpolation Between the Acoustic Mismatch Model and the Diffuse Mismatch Model for the Interface Thermal Conductance: Application to InN/GaN Superlattice
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
11
), p.
112401
.10.1115/1.4004341
70.
Kazan
,
M.
,
Bruyant
,
A.
,
Royer
,
P.
, and
Masri
,
P.
,
2010
, “
Thermal Conductance of the Interfaces Between the III-Nitride Materials and Their Substrates: Effects of Intrinsic Materials Properties and Interface Conditions
,”
Surf. Sci. Rep.
,
65
(
4
), pp.
111
127
.10.1016/j.surfrep.2010.02.001
71.
Kazan
,
M.
,
2009
, “
First-Principles Calculation of the Thermal Conductance of GaN/Si and GaN/SiC Interfaces as Functions of the Interface Conditions
,”
Appl. Phys. Lett.
,
95
, p.
141904
.10.1063/1.3242349
72.
Mei
,
S.
, and
Knezevic
,
I.
,
2015
, “
Thermal Conductivity of III-V Semiconductor Superlattices
,”
J. Appl. Phys.
,
118
, p.
175101
.10.1063/1.4935142
73.
Alameh
,
Z.
, and
Kazan
,
M.
,
2012
, “
Predictive Calculation of the Lattice Thermal Conductivity With Temperature-Dependent Vibrational Parameters
,”
J. Appl. Phys.
,
112
, p.
123506
.10.1063/1.4769429
74.
Lam
,
P. K.
, and
Cohen
,
M. L.
,
1982
, “
Ab Initio Calculation of Phonon Frequencies of Al
,”
Phys. Rev. B
,
25
(
10
), pp.
6139
6145
.10.1103/PhysRevB.25.6139
75.
Wang
,
Y.
,
Shang
,
S. –L.
,
Fang
,
H.
,
Liu
,
Z. –K.
, and
Chen
,
L. –Q.
,
2016
, “
First-Principles Calculations of Lattice Dynamics and Thermal Properties of Polar Solids
,”
Npj Comput. Mater.
,
2
, p.
16006
.10.1038/npjcompumats.2016.6
76.
Koval
,
S.
,
Burriel
,
R.
,
Stachiotti
,
M. G.
,
Castro
,
M.
,
Migoni
,
R. L.
,
Moreno
,
M. S.
,
Varela
,
A.
, and
Rodriguez
,
C. O.
,
1999
, “
Linear Augmented-Plane-Wave Frozen-Phonon Calculation, Shell-Model Lattice Dynamics, and Specific-Heat Measurement of SnO
,”
Phys. Rev. B
,
60
(
21
), pp.
14496
14499
.10.1103/PhysRevB.60.14496
77.
Novotny
,
V.
,
Meincke
,
P. P. M.
, and
Watson
,
J. H. P.
,
1972
, “
Effect of Size and Surface on the Specific Heat of Small Lead Particles
,”
Phys. Rev. Lett.
,
28
(
14
), pp.
901
903
.10.1103/PhysRevLett.28.901
78.
Zhang
,
Y.
,
Cao
,
J. X.
,
Xiao
,
Y.
, and
Y.
,
X. H.
,
2007
, “
Phonon Spectrum and Specific Heat of Silicon Nanowires
,”
J. Appl. Phys.
,
102
, p.
104303
.10.1063/1.2811862
79.
Victor
,
A. C.
,
1962
, “
Heat Capacity of Diamond at High Temperatures
,”
J. Chem. Phys.
,
36
(
7
), pp.
1903
1911
.10.1063/1.1701288
You do not currently have access to this content.