Abstract

In recent years, lithium-ion batteries (LIBs) have gained attention and popularity due to their extended cycle life and high energy density. A hexagon-shaped 18,650 lithium-ion cylindrical cell battery pack was designed, incorporating paraffin wax (PA) as a phase change material (PCM) and nano-enhanced phase change material (Ne-PCM). However, the low thermal conductivity of the PCM causes a significant challenge to the development of electric vehicles (EVs). The highest temperature in the cylindrical cell battery pack is reached in the midregion, leading to an uneven temperature distribution across the cells. To overcome these challenges and achieve efficient battery module performance, phase change with nanomaterials such as graphene platelet nanopowder (GPN), multiwalled carbon nanotubes (MWCNTs), and graphite-synthetic powder (GSP) was placed in the center of four cells. Studies on the battery module were conducted without cooling, with PCM cooling, and with Ne-PCM cooling. The investigation revealed that the battery pack with Ne-PCM performed well, maintaining the temperature below 50 °C at different discharge rates of 1C, 2C, and 3C, and ensuring a uniform temperature variation within the cells. Ne-PCM decreased the temperature differential between the modules at 1C, 2C, and 3C discharge rates by 85.49%, 91.47%, and 84.21%, respectively, compared to PCM.

References

1.
Deng
,
Q.
,
Liu
,
Q.
,
Nian
,
Y.
,
Zhao
,
R.
, and
Cheng
,
W.
,
2023
, “
A Novel Flexible Composite Phase Change Material With Enhanced Toughness and Shape Stability for Battery Thermal Management
,”
J. Energy Storage
,
72
, p.
108701
.10.1016/j.est.2023.108701
2.
Mousavi
,
S.
,
Zadehkabir
,
A.
,
Siavashi
,
M.
, and
Yang
,
X.
,
2023
, “
An Improved Hybrid Thermal Management System for Prismatic Li-Ion Batteries Integrated With Mini-Channel and Phase Change Materials
,”
Appl. Energy
,
334
, p.
120643
.10.1016/j.apenergy.2023.120643
3.
Sun
,
Z.
,
Guo
,
Y.
,
Zhang
,
C.
,
Whitehouse
,
J.
,
Zho
,
Q.
,
Xu
,
H.
, and
Wang
,
C.
,
2023
, “
Experimental Study of Battery Passive Thermal Management System Using Copper Foam-Based Phase Change Materials
,”
Int. J. Thermofluids
,
17
, p.
100255
.10.1016/j.ijft.2022.100255
4.
An
,
Z.
,
Zhang
,
C.
,
Luo
,
Y.
, and
Zhang
,
J.
,
2023
, “
Cooling and Preheating Behavior of Compact Power Lithium-Ion Battery Thermal Management System
,”
Appl. Therm. Eng.
,
226
, p.
120238
.10.1016/j.applthermaleng.2023.120238
5.
Masthan Vali
,
P. S. N.
, and
Murali
,
G.
,
2023
, “
Battery Thermal Management System on Trapezoidal Battery Pack With Liquid Cooling System Utilizing Phase Change Material
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
, p.
011003
.10.1115/1.4063355
6.
Murugan
,
M.
,
Saravanan
,
A.
,
Elumalai
,
P. V.
,
Murali
,
G.
,
Dhineshbabu
,
N. R.
,
Kumar
,
P.
, and
Afzal
,
A.
,
2022
, “
Thermal Management System of Lithium-Ion Battery Packs for Electric Vehicles: An Insight Based on Bibliometric Study
,”
J. Energy Storage
,
52
, p.
104723
.10.1016/j.est.2022.104723
7.
Talele
,
V.
,
Patil
,
M. S.
,
Panchal
,
S.
,
Fraser
,
R.
,
Fowler
,
M.
, and
Gunti
,
S. R.
,
2023
, “
Novel Metallic Separator Coupled Composite Phase Change Material Passive Thermal Design for Large Format Prismatic Battery Pack
,”
J. Energy Storage
,
58
, p.
106336
.10.1016/j.est.2022.106336
8.
Wu
,
X.
,
Mo
,
C.
,
Xie
,
J.
,
Xu
,
Y.
,
Yang
,
X.
, and
Zang
,
G.
,
2021
, “
Experimental Study of a Novel Strategy to Construct the Battery Thermal Management Module by Using the Tubular Phase Change Material
,”
J. Energy Storage
,
39
, pp.
102
585
.10.1016/j.est.2021.102585
9.
Galazutdinova
,
Y.
,
Ushak
,
S.
,
Farid
,
M.
,
Al-Hallaj
,
S.
, and
Grágeda
,
M.
,
2021
, “
Development of the Inorganic Composite Phase Change Materials for Passive Thermal Management of Li-Ion Batteries: Application
,”
J. Power Sources
,
491
, p.
229624
.10.1016/j.jpowsour.2021.229624
10.
Akinlabi
,
A. H.
, and
Solyali
,
D.
,
2020
, “
Configuration, Design, and Optimization of Air-Cooled Battery Thermal Management System for Electric Vehicles: A Review
,”
Renewable Sustainable Energy Rev.
,
125
, p.
109815
.10.1016/j.rser.2020.109815
11.
Nazar
,
M. W.
,
Iqbal
,
N.
,
Ali
,
M.
,
Nazir
,
H.
, and
Amjad
,
M. Z. B.
,
2023
, “
Thermal Management of Li-Ion Battery by Using Active and Passive Cooling Method
,”
J. Energy Storage
,
61
, p.
106800
.10.1016/j.est.2023.106800
12.
Singh
,
L. K.
, and
Gupta
,
A. K.
,
2023
, “
Hybrid Cooling-Based Lithium-Ion Battery Thermal Management for Electric Vehicles
,”
Environ., Dev. Sustainability
,
25
(
4
), pp.
3627
3648
.10.1007/s10668-022-02197-7
13.
Wang
,
M.
,
Teng
,
S.
,
Xi
,
H.
, and
Li
,
Y.
,
2021
, “
Cooling Performance Optimization of Air-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
195
, p.
117242
.10.1016/j.applthermaleng.2021.117242
14.
Han
,
L.
,
Zhang
,
X.
,
Ji
,
J.
, and
Ma
,
K.
,
2022
, “
Research Progress on the Influence of Nano-Additives on Phase Change Materials
,”
J. Energy Storage
,
55
, p.
105807
.10.1016/j.est.2022.105807
15.
Chen
,
M.
,
Zhang
,
S.
,
Wang
,
G.
,
Weng
,
J.
,
Ouyang
,
D.
,
Wu
,
X.
,
Zhao
,
L.
, and
Wang
,
J.
,
2020
, “
Experimental Analysis on the Thermal Management of Lithium-Ion Batteries Based on Phase Change Materials
,”
Appl. Sci.
,
10
(
20
), p.
7354
.10.3390/app10207354
16.
Hayat
,
M. A.
,
Yang
,
Y.
,
Li
,
L.
,
Bevilacqua
,
M.
, and
Chen
,
Y.
,
2023
, “
Preparation and Thermophysical Characterisation Analysis of Potential Nano-Phase Transition Materials for Thermal Energy Storage Applications
,”
J. Mol. Liq.
,
376
, p.
121464
.10.1016/j.molliq.2023.121464
17.
Xin
,
Q.
,
Yang
,
T.
,
Zhang
,
H.
,
Yang
,
J.
,
Zeng
,
J.
, and
Xiao
,
J.
,
2023
, “
Experimental and Numerical Study of Lithium-Ion Battery Thermal Management System Using Composite Phase Change Material and Liquid Cooling
,”
J. Energy Storage
,
71
, p.
108003
.10.1016/j.est.2023.108003
18.
Leoncini
,
G.
,
Mothier
,
R.
,
Michel
,
B.
, and
Clausse
,
M.
,
2023
, “
A Review on Challenges Concerning Thermal Management System Design for Medium Duty Electric Vehicles
,”
Appl. Therm. Eng.
,
236
, p.
121464
.10.1016/j.applthermaleng.2023.121464
19.
Alami
,
A. H.
,
Maghrabie
,
H. M.
,
Abdelkareem
,
M. A.
,
Sayed
,
E. T.
,
Yasser
,
Z.
,
Salameh
,
T.
,
Rahman
,
S. M. A.
,
Rezk
,
H.
, and
Olabi
,
A. G.
,
2022
, “
Potential Applications of Phase Change Materials for Batteries' Thermal Management Systems in Electric Vehicles
,”
J. Energy Storage
,
54
, p.
105204
.10.1016/j.est.2022.105204
20.
Huang
,
R.
,
Li
,
Z.
,
Hong
,
W.
,
Wu
,
Q.
, and
Yu
,
X.
,
2020
, “
Experimental and Numerical Study of PCM Thermophysical Parameters on Lithium-Ion Battery Thermal Management
,”
Energy Rep.
,
6
, pp.
8
19
.10.1016/j.egyr.2019.09.060
21.
Karimi
,
D.
,
Behi
,
H.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2022
, “
An Experimental Study on Thermal Performance of Graphite-Based Phase-Change Materials for High-Power Batteries
,”
Energies
,
15
(
7
), p.
2515
.10.3390/en15072515
22.
Murali
,
G.
,
Sravya
,
G. S. N.
,
Jaya
,
J.
, and
Naga Vamsi
,
V.
,
2021
, “
A Review on Hybrid Thermal Management of Battery Packs and It's Cooling Performance Enhanced by PCM
,”
Renewable Sustainable Energy Rev.
,
150
, p.
111513
.10.1016/j.rser.2021.111513
23.
Shojaeefard
,
M. H.
,
Ranj Baran
,
Y. S.
,
Lotfi
,
M.
,
Bidgoli
,
H.
, and
Amani
,
S.
,
2019
, “
Effect of Module Structure on the Performance of Battery Thermal Management System Based on PCM
,”
First International Conference on Modern Powertrains, Focus Electric Vehicles
, Tehran, Iran, Feb., Vol.
1
, pp.
1
16
.https://www.researchgate.net/publication/344465326_Effect_of_module_structure_on_the_performance_of_battery_thermal_management_system_based_on_PCM
24.
Verma
,
A.
,
Shashidhara
,
S.
, and
Rakshit
,
D.
,
2019
, “
A Comparative Study on Battery Thermal Management Using Phase Change Material (PCM)
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
74
83
.10.1016/j.tsep.2019.03.003
25.
Wang
,
Z.
,
Du
,
C.
,
Qi
,
R.
, and
Wang
,
Y.
,
2022
, “
Experimental Study on Thermal Management of Lithium-Ion Battery With Graphite Powder Based Composite Phase Change Materials Covering the Whole Climatic Range
,”
Appl. Therm. Eng.
,
216
, p.
119072
.10.1016/j.applthermaleng.2022.119072
26.
Osmani
,
K.
,
Alkhedher
,
M.
,
Ramadan
,
M.
,
Choi
,
D. S.
,
Li
,
L. K.
,
Doranehgard
,
M. H.
, and
Olabi
,
A. G.
,
2023
, “
Recent Progress in the Thermal Management of Lithium-Ion Batteries
,”
J. Cleaner Prod.
,
389
, p.
136024
.10.1016/j.jclepro.2023.136024
27.
Zou
,
D.
,
Ma
,
X.
,
Liu
,
X.
,
Zheng
,
P.
, and
Hu
,
Y.
,
2018
, “
Thermal Performance Enhancement of Composite Phase Change Materials (PCM) Using Graphene and Carbon Nanotubes as Additives for the Potential Application in Lithium-Ion Power Battery
,”
Int. J. Heat Mass Transfer
,
120
, pp.
33
41
.10.1016/j.ijheatmasstransfer.2017.12.024
28.
Li
,
W.
,
Dong
,
Y.
,
Zhang
,
X.
, and
Liu
,
X.
,
2019
, “
Preparation and Performance Analysis of Graphite Additive/Paraffin Composite Phase Change Materials
,”
Processes
,
7
(
7
), p.
447
.10.3390/pr7070447
29.
Zhang
,
C. W.
,
Chen
,
S. R.
,
Gao
,
H. B.
,
Xu
,
K.
,
Xia
,
J.
,
Xia
,
Z.
, and
Li
,
S. T.
,
2019
, “
Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack
,”
Energies
,
12
(
10
), pp.
1937
37
.10.3390/en12101937
You do not currently have access to this content.