Abstract

A pressure-driven channel flow between a longitudinally ridged superhydrophobic surface (SHS) and solid wall is studied, where a constant heat flux enters the channel from either the SHS or solid wall. First, a model is developed which neglects thermocapillary stresses (TCS) in the transverse direction. The caloric, convective, and total thermal resistance are evaluated, and their dependence on the shape of the liquid–gas interface (meniscus), gas ridge width, texture period, channel height, streamwise TCS, Péclet number, and channel length is established. The caloric resistance is minimized with menisci that protrude into the gas cavity, large slip fractions, small channel heights, and small streamwise TCSs. When heating from the SHS, the convective resistance increases, and therefore, a design compromise exists between caloric and convective resistances. However, when heating from the solid wall, the convective resistance remains the same and SHSs that minimize caloric resistance are optimal. We investigate both water and Galinstan for microchannel applications and find that both configurations can have a lower total thermal resistance than a smooth-walled channel. Heating from the solid wall is shown to always have the lowest total thermal resistance. Numerical simulations are used to analyze the effect of transverse TCSs. Our model captures much of the physics in heated superhydrophobic channels but is computationally inexpensive when compared to the numerical simulations.

References

1.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.10.1146/annurev-fluid-121108-145558
2.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.10.1039/tf9444000546
3.
Golovin
,
K. B.
,
Gose
,
J. W.
,
Perlin
,
M.
,
Ceccio
,
S. L.
, and
Tuteja
,
A.
,
2016
, “
Bioinspired Surfaces for Turbulent Drag Reduction
,”
Philos. Trans. R. Soc. Lond. A
,
374
(
2073
), p.
20160189
.10.1098/rsta.2016.0189
4.
Lee
,
C.
,
Choi
,
C.
, and
Kim
,
C.
,
2016
, “
Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review
,”
Exp. Fluids
,
57
(
12
), p.
176
.10.1007/s00348-016-2264-z
5.
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2009
, “
Analysis of Stokes Flow in Microchannels With Superhydrophobic Surfaces Containing a Periodic Array of Micro-Grooves
,”
Microfluid. Nanofluid.
,
7
(
3
), pp.
353
382
.10.1007/s10404-008-0387-0
6.
Steinberger
,
A.
,
Cottin-Bizonne
,
C.
,
Kleimann
,
P.
, and
Charlaix
,
E.
,
2007
, “
High Friction on a Bubble Mattress
,”
Nat. Mater.
,
6
(
9
), pp.
665
668
.10.1038/nmat1962
7.
Tsai
,
P.
,
Peters
,
A. M.
,
Pirat
,
C.
,
Wessling
,
M.
,
Lammertink
,
R. G. H.
, and
Lohse
,
D.
,
2009
, “
Quantifying Effective Slip Length Over Micropatterned Hydrophobic Surfaces
,”
Phys. Fluids
,
21
(
11
), p.
112002
.10.1063/1.3266505
8.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
9.
Hodes
,
M.
,
Kirk
,
T. L.
,
Karamanis
,
G.
, and
MacLachlan
,
S.
,
2017
, “
Effect of Thermocapillary Stress on Slip Length for a Channel Textured With Parallel Ridges
,”
J. Fluid Mech.
,
814
, pp.
301
324
.10.1017/jfm.2017.8
10.
Game
,
S. E.
,
Hodes
,
M.
, and
Papageorgiou
,
D. T.
,
2019
, “
Effects of Slowly Varying Meniscus Curvature on Internal Flows in the Cassie State
,”
J. Fluid Mech.
,
872
, pp.
272
307
.10.1017/jfm.2019.366
11.
Hodes
,
M.
,
Lam
,
L. S.
,
Cowley
,
A.
,
Enright
,
R.
, and
MacLachlan
,
S.
,
2015
, “
Effect of Evaporation and Condensation at Menisci on Apparent Thermal Slip
,”
ASME J. Heat Mass Transfer Trans. ASME
,
137
(
7
), p.
071502
.10.1115/1.4029818
12.
Game
,
S. E.
,
Hodes
,
M.
,
Keaveny
,
E. E.
, and
Papageorgiou
,
D. T.
,
2017
, “
Physical Mechanisms Relevant to Flow Resistance in Textured Microchannels
,”
Phys. Rev. Fluid
,
2
(
9
), p.
094102
.10.1103/PhysRevFluids.2.094102
13.
Kirk
,
T. L.
,
Karamanis
,
G.
,
Crowdy
,
D. G.
, and
Hodes
,
M.
,
2020
, “
Thermocapillary Stress and Meniscus Curvature Effects on Slip Lengths in Ridged Microchannels
,”
J. Fluid Mech.
,
894
, p. A15.10.1017/jfm.2020.279
14.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2014
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
1
), p.
012402
.10.1115/1.4024837
15.
Ng
,
C.
, and
Wang
,
C. Y.
,
2014
, “
Temperature Jump Coefficient for Superhydrophobic Surfaces
,”
ASME J. Heat Mass Transfer Trans. ASME
,
136
(
6
), p. 064501.10.1115/1.4026499
16.
Maynes
,
D.
,
Webb
,
B. W.
, and
Davies
,
J.
,
2008
, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,”
ASME J. Heat Mass Transfer Trans. ASME
,
130
(
2
), p.
022402
.10.1115/1.2789715
17.
Maynes
,
D.
,
Webb
,
B. W.
,
Crockett
,
J.
, and
Solovjov
,
V.
,
2013
, “
Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Mass Transfer Trans. ASME
,
135
(
2
), p.
021701
.10.1115/1.4007429
18.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
Int. J. Heat Mass Transfer
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
19.
Maynes
,
D.
, and
Crockett
,
J.
,
2014
, “
Apparent Temperature Jump and Thermal Transport in Channels With Streamwise Rib and Cavity Featured Superhydrophobic Walls at Constant Heat Flux
,”
ASME J. Heat Mass Transfer Trans. ASME
,
136
(
1
), p.
011701
.10.1115/1.4025045
20.
Kirk
,
T. L.
,
Hodes
,
M.
, and
Papageorgiou
,
D. T.
,
2017
, “
Nusselt Numbers for Poiseuille Flow Over Isoflux Parallel Ridges Accounting for Meniscus Curvature
,”
J. Fluid Mech.
,
811
, pp.
315
349
.10.1017/jfm.2016.760
21.
Hodes
,
M.
,
Zhang
,
R.
,
Lam
,
L. S.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2014
, “
On the Potential of Galinstan-Based Minichannel and Minigap Cooling
,”
IEEE Trans. Compon. Packag. Manuf.
,
4
(
1
), pp.
46
56
.10.1109/TCPMT.2013.2274699
22.
Lam
,
L. S.
,
Hodes
,
M.
, and
Enright
,
R.
,
2015
, “
Analysis of Galinstan-Based Microgap Cooling Enhancement Using Structured Surfaces
,”
ASME J. Heat Mass Transfer Trans. ASME
,
137
(
9
), p.
091003
.10.1115/1.4030208
23.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C.
,
2012
, “
Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp.
443
450
.10.1109/JMEMS.2011.2174421
24.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G. H.
, and
Hosoi
,
A. E.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.10.1017/S0022112008005053
25.
Baier
,
T.
,
Steffes
,
C.
, and
Hardt
,
S.
,
2010
, “
Thermocapillary Flow on Superhydrophobic Surfaces
,”
Phys. Rev. E
,
82
(
3
), p.
037301
.10.1103/PhysRevE.82.037301
26.
Game
,
S.
,
Hodes
,
M.
,
Kirk
,
T.
, and
Papageorgiou
,
D. T.
,
2018
, “
Nusselt Numbers for Poiseuille Flow Over Isoflux Parallel Ridges for Arbitrary Meniscus Curvature
,”
ASME J. Heat Mass Transfer Trans. ASME
,
140
(
8
), p.
081701
.10.1115/1.4038831
27.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley, Hoboken, NJ
.
28.
Peyret
,
R.
,
2013
,
Spectral Methods for Incompressible Viscous Flow
, Vol.
148
,
Springer Science & Business Media
,
New York
.
29.
Keyes
,
R. W.
,
1975
, “
Physical Limits in Digital Electronics
,”
Proc. IEEE
,
63
(
5
), pp.
740
767
.10.1109/PROC.1975.9825
30.
Lemmon
,
E. W.
,
1998
,
Thermophysical Properties of Fluid Systems
,
NIST Chemistry WebBook, National Institute of Standards and Technology
,
Gaithersburg, MD
.
31.
Prokhorenko
,
V. Y.
,
Roshchupkin
,
V. V.
,
Pokrasin
,
M. A.
,
Prokhorenko
,
S.
, and
Kotov
,
V.
,
2000
, “
Liquid Gallium: Potential Uses as a Heat-Transfer Agent
,”
High Temp.
,
38
(
6
), pp.
954
968
.10.1023/A:1004157827093
You do not currently have access to this content.