Abstract

The subcooled flow boiling of water in a vertical annulus channel is studied numerically at low-pressure conditions. The two-fluid model is developed with flow-regime dependent interfacial transfers for mass, momentum, and energy using the algebraic interfacial area density (AIAD) framework. A discrete population balance model is used to mechanistically determine the vapor bubble diameter in the flow channel by considering the bubble aggregation and breakup effects. Energy balance at the heated wall for the subcooled nucleate boiling is handled using a suitable wall boiling model. A coupling is achieved between the discrete population balance and the wall boiling model for the nucleation and the growth rate of the vapor bubbles along the heated wall. The developed model simulates the reference experimental cases of flow boiling in a vertical channel for various flow and thermal conditions. At low wall heat flux, the wall boiling generates vapor bubbles near the heated wall and within the bubbly flow regime. With an increase in the wall heat flux, the aggregation and evaporation cause the formation of larger bubbles, which progress toward the flow channel core region, a phase that is representative of the transitional flow regime. The model's capability to predict such flow regime transition is validated with the experimental results. The bubble aggregation is found to be dominant compared to the breakup, and thus, proper choice of the aggregation factor is important for the accurate prediction of vapor parameters for the subcooled flow boiling at low-pressure conditions.

References

1.
Zeitoun
,
O.
, and
Shoukri
,
M.
,
1997
, “
Axial Void Fraction Profile in Low Pressure Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
869
879
.10.1016/0017-9310(96)00164-0
2.
Lee
,
T. H.
,
Park
,
G. C.
, and
Lee
,
D. J.
,
2002
, “
Local Flow Characteristics of Subcooled Boiling Flow of Water in a Vertical Concentric Annulus
,”
Int. J. Multiphase Flow
,
28
(
8
), pp.
1351
1368
.10.1016/S0301-9322(02)00026-5
3.
Yun
,
B. J.
,
Bae
,
B. U.
,
Euh
,
D. J.
,
Park
,
G. C.
, and
Song
,
C. H.
,
2010
, “
Characteristics of the Local Bubble Parameters of a Subcooled Boiling Flow in an Annulus
,”
Nucl. Eng. Des.
,
240
(
9
), pp.
2295
2303
.10.1016/j.nucengdes.2009.11.014
4.
Yun
,
B.-J.
,
Bae
,
B.-U.
,
Euh
,
D.-J.
, and
Song
,
C.-H.
,
2010
, “
Experimental Investigation of Local Two-Phase Flow Parameters of a Subcooled Boiling Flow in an Annulus
,”
Nucl. Eng. Des.
,
240
(
12
), pp.
3956
3966
.10.1016/j.nucengdes.2010.02.004
5.
Lee
,
Y.-G.
,
Park
,
I. W.
,
Yoo
,
J.-W.
, and
Kim
,
S.
,
2019
, “
Measurement of Multi-Dimensional Distribution of Local Bubble Parameters in a Vertical Annulus Under Subcooled Boiling Conditions
,”
Int. J. Heat Mass Transfer
,
140
, pp.
992
1005
.10.1016/j.ijheatmasstransfer.2019.05.106
6.
Tu
,
J. Y.
,
Yeoh
,
G. H.
,
Park
,
G. C.
, and
Kim
,
M. O.
,
2005
, “
On Population Balance Approach for Subcooled Boiling Flow Prediction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
3
), pp.
253
264
.10.1115/1.1857952
7.
Yeoh
,
G. H.
,
Vahaji
,
S.
,
Cheung
,
S. C. P.
, and
Tu
,
J. Y.
,
2014
, “
Modeling Subcooled Flow Boiling in Vertical Channels at Low pressures—Part 2: Evaluation of Mechanistic Approach
,”
Int. J. Heat Mass Transfer
,
75
, pp.
754
768
.10.1016/j.ijheatmasstransfer.2014.03.017
8.
Colombo
,
M.
, and
Fairweather
,
M.
,
2016
, “
Accuracy of Eulerian–Eulerian, Two-Fluid CFD Boiling Models of Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
103
, pp.
28
44
.10.1016/j.ijheatmasstransfer.2016.06.098
9.
Jeong
,
J. J.
,
Yoon
,
H. Y.
,
Park
,
I. K.
, and
Cho
,
H. K.
,
2010
, “
The CUPID Code Development and Assessment Strategy
,”
Nucl. Eng. Technol.
,
42
(
6
), pp.
636
655
.10.5516/NET.2010.42.6.636
10.
Höhne
,
T.
, and
Vallée
,
C.
,
2010
, “
Experiments and Numerical Simulations of Horizontal Two-Phase Flow Regimes Using an Interfacial Area Density Model
,”
J. Comput. Multiphase Flows
,
2
(
3
), pp.
131
143
.10.1260/1757-482X.2.3.131
11.
Porombka
,
P.
, and
Höhne
,
T.
,
2015
, “
Drag and Turbulence Modelling for Free Surface Flows Within the Two-Fluid Euler-Euler Framework
,”
Chem. Eng. Sci.
,
134
, pp.
348
359
.10.1016/j.ces.2015.05.029
12.
Hänsch
,
S.
,
Lucas
,
D.
,
Krepper
,
E.
, and
Höhne
,
T.
,
2012
, “
A Multi-Field Two-Fluid Concept for Transitions Between Different Scales of Interfacial Structures
,”
Int. J. Multiphase Flow
,
47
, pp.
171
182
.10.1016/j.ijmultiphaseflow.2012.07.007
13.
Amidu
,
M. A.
, and
Kim
,
H.
,
2019
, “
Modeling and Simulation of Flow Boiling Heat Transfer on a Downward-Facing Heating Wall in the Presence of Vapor Slugs
,”
Nucl. Eng. Des.
,
351
, pp.
175
188
.10.1016/j.nucengdes.2019.05.032
14.
Tom
,
S.
,
Mangarjuna Rao
,
P.
,
Venkatraman
,
B.
, and
Raghupathy
,
S.
,
2022
, “
Development of CFD Based Model for Sodium Flow Boiling in Narrow Channel Akin to SFR Fuel Subchannel Towards High Void Fraction Regimes
,”
Nucl. Eng. Des.
,
396
, p.
111877
.10.1016/j.nucengdes.2022.111877
15.
Tom
,
S.
,
Mangarjuna Rao
,
P.
,
Venkatraman
,
B.
, and
Raghupathy
,
S.
,
2023
, “
Numerical Simulation of Sub-Cooled Flow Boiling in a Vertical Annulus Channel Under Near Atmospheric Pressure Conditions
,”
Nucl. Sci. Eng.
,
197
(
6
), pp.
1038
1070
.10.1080/00295639.2022.2133948
16.
Tom
,
S.
,
Mangarjuna Rao
,
P.
,
Venkatraman
,
B.
, and
Raghupathy
,
S.
,
2023
, “
Numerical Studies on Liquid Sodium Flow Boiling in a 7-Pin Hexagonal Subassembly Towards Flow Rundown Scenario in SFR
,”
Appl. Therm. Eng
,
230
, p.
120637
.10.1016/j.applthermaleng.2023.120637
17.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
,
25
(
5
), pp.
843
855
.10.1002/aic.690250513
18.
Yoon
,
S. J.
,
Agostinelli
,
G.
, and
Baglietto
,
E.
,
2017
, “
Assessment of Multiphase CFD With Zero Closure Model for Boiling Water Reactor Fuel Assemblies
,”
17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Sep. 3–8,
Shaanxi, China
, pp.
1
17
.https://www.osti.gov/servlets/purl/1409683
19.
Antal
,
S. P.
,
Lahey
,
R. T.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.10.1016/0301-9322(91)90029-3
20.
Burns
,
A.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J.-M.
,
2004
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
5th International Conference on Multiphase Flow
, Yokohoma, Japan, May 30–June 4, pp.
1
17
.https://www.researchgate.net/publication/261761053_The_Favre_Averaged_Drag_Model_for_Turbulent_Dispersion_in_Eulerian_Multi-Phase_Flows
21.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
22.
Wallis
,
G. B.
,
2020
,
One-Dimensional Two-Phase Flow
,
Courier Dover Publications
, New York.
23.
Ranz
,
W. E.
,
1952
, “
Evaporation From Drops, Parts I& II
,”
Chem. Eng. Prog
,
48
, pp.
141
146
.
24.
Laviéville
,
J.
,
Quémérais
,
E.
,
Mimouni
,
S.
,
Boucker
,
M.
, and
Mechitoua
,
N.
,
2005
, “
NEPTUNE CFD V1. 0 Theory Guide
,” EDF R&D Chatou, France.
25.
Setoodeh
,
H.
,
Shabestary
,
A. M.
,
Ding
,
W.
,
Lucas
,
D.
, and
Hampel
,
U.
,
2022
, “
CFD-Modelling of Boiling in a Heated Pipe Including Flow Pattern Transition
,”
Appl. Therm. Eng.
,
204
, p.
117962
.10.1016/j.applthermaleng.2021.117962
26.
Gada
,
V. H.
,
Tandon
,
M. P.
,
Elias
,
J.
,
Vikulov
,
R.
, and
Lo
,
S.
,
2017
, “
A Large Scale Interface Multi-Fluid Model for Simulating Multiphase Flows
,”
Appl. Math. Model
,
44
, pp.
189
204
.10.1016/j.apm.2017.02.030
27.
Tolubinsky
,
V. I.
, and
Kostanchuk
,
D. M.
,
1970
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
International Heat Transfer Conference
, Vol. 4,
Paris-Versailles, France
, Aug. 31–Sep. 5, pp.
1
11
.
28.
Lemmert
,
M.
, and
Chawla
,
J. M.
,
1977
, “
Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient
,”
Heat Transfer in Boiling
,
Academic Press and Hemisphere
,
New York
, pp.
237
247
.
29.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
.10.1002/aic.690060405
30.
ANSYS
,
2023
, Fluent Theory Guide, ANSYS, Canonsburg, PA, accessed Aug. 21, 2023, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
31.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns
,”
AIChE J.
,
36
, pp.
1485
1499
.10.1002/aic.690361004
32.
Luo
,
H.
, and
Svendsen
,
H. F.
,
1996
, “
Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
,”
AIChE J.
,
42
(
5
), pp.
1225
1233
.10.1002/aic.690420505
33.
Hagesaether
,
L.
,
Jakobsen
,
H. A.
, and
Svendsen
,
H. F.
,
2002
, “
A Model for Turbulent Binary Breakup of Dispersed Fluid Particles
,”
Chem. Eng. Sci.
,
57
(
16
), pp.
3251
3267
.10.1016/S0009-2509(02)00197-5
34.
Höhne
,
T.
,
Krepper
,
E.
,
Lucas
,
D.
, and
Montoya
,
G.
,
2019
, “
A Multiscale Approach Simulating Boiling in a Heated Pipe Including Flow Pattern Transition
,”
Nucl. Technol.
,
205
(
1–2
), pp.
48
56
.10.1080/00295450.2018.1495025
35.
Fletcher
,
C. D.
, and
Schultz
,
R. R.
,
1992
, “
RELAP5/MOD3 Code Manual
,”
U.S. Department of Energy
, Washington, D.C, accessed Aug. 28, 2023, https://www.osti.gov/biblio/5559769
You do not currently have access to this content.