Abstract

Stability analysis of buoyancy-driven convective flow in the trapezoidal cavities is essential for efficient heat transfer in solar evaporators. In the present analysis, the symmetry breakdown pitchfork and Hopf bifurcations' phenomena have been identified for different aspects of the trapezoidal cavity, which is heated at the bottom and open at the top. The system loses stability through pitchfork bifurcation, and as a result, symmetry breakdown of the temperature contour occurs beyond a threshold value of Rayleigh number (Ra). Further, increases in Ra cause instability in the form of Hopf bifurcation at the aspect ratio of 1.5 and for different cavity internal angles. Hopf bifurcation emerges by the sudden change in the streamwise velocity component, shifting from a decaying state to a continuously fluctuating magnitude at a particular location within the cavity. Through this, we predict the threshold value of Ra corresponding to Hopf bifurcation at different obtuse and acute cavity angles for an aspect ratio of 1.5. The flow's stable transient and unstable states are also identified and discussed for different values of the cavity internal angle for an aspect ratio of 1.5.

References

1.
Xia
,
C.
, and
Murthy
,
Y. J.
,
2002
, “
Buoyancy-Driven Flow Transitions in Deep Cavities Heated From Below
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
4
), pp.
650
659
.10.1115/1.1481356
2.
Qiao
,
M.
,
Xu
,
F.
, and
Saha
,
S. C.
,
2018
, “
Numerical Study of Transition to Chaos of a Buoyancy Plume From a Two-Dimensional Open Cavity Heated From Below
,”
Appl. Math. Modell.
,
61
, pp.
577
592
.10.1016/j.apm.2018.05.013
3.
Qiao
,
M.
,
Tian
,
Z. F.
,
Nie
,
B.
, and
Xu
,
F.
,
2018
, “
The Route to Chaos for Plumes From a Top-Open Cylinder Heated From Underneath
,”
Phys. Fluids
,
30
(
12
), p.
124102
.10.1063/1.5054847
4.
Qiao
,
M.
,
Tian
,
Z. F.
,
Yang
,
Q.
, and
Xu
,
F.
,
2020
, “
Transition to Chaos for Buoyant Flows in a Groove Heated From Below
,”
Phys. Fluids
,
32
(
5
), p.
054104
.10.1063/5.0004288
5.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
6.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2020
, “
Whole Field Measurements to Identify the Critical Rayleigh Number for the Onset of Natural Convection in Top Open Cavity
,”
Exp. Heat Transfer
,
33
(
2
), pp.
123
140
.10.1080/08916152.2019.1586800
7.
Saxena
,
A.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2020
, “
Experiments on the Identification of the Onset of Buoyancy-Driven Convection in High Aspect Ratio Top Open Cavities
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
10
), p.
102602
.10.1115/1.4047489
8.
Ridouane
,
E. H.
, and
Campo
,
A.
,
2006
, “
Formation of a Pitchfork Bifurcation in Thermal Convection Flow Inside an Isosceles Triangular Cavity
,”
Phys. Fluids
,
18
(
7
), p.
074102
.10.1063/1.2220051
9.
Puigjaner
,
D.
,
Herrero
,
J.
,
Giralt
,
F.
, and
Simó
,
C.
,
2004
, “
Stability Analysis of the Flow in a Cubical Cavity Heated From Below
,”
Phys. Fluids
,
16
(
10
), pp.
3639
3655
.10.1063/1.1778031
10.
Puigjaner
,
D.
,
Herrero
,
J.
,
Simo
,
C.
, and
Giralt
,
F.
,
2008
, “
Bifurcation Analysis of Steady Rayleigh–Benard' Convection in a Cubical Cavity With Conducting Sidewalls
,”
J. Fluid Mech.
,
598
, pp.
393
427
.10.1017/S0022112007000080
11.
Zhang
,
W.
,
Qiao
,
M.
,
Nie
,
B.
, and
Xu
,
F.
,
2021
, “
Period Bubbling Bifurcation and Transition to a Chaotic State of Convective Flow on a Top-Open Cylinder
,”
Phys. Fluids
,
33
(
6
), p.
064110
.10.1063/5.0055723
12.
Erenburg
,
V.
,
Gelfgat
,
A. Y. U.
,
Kit
,
E.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
,
2003
, “
Multiple States, Stability and Bifurcations of Natural Convection in a Rectangular Cavity With Partially Heated Vertical Walls
,”
J. Fluid Mech.
,
492
, pp.
63
89
.10.1017/S0022112003005469
13.
Hossain
,
M. S.
, and
Alim
,
M. A.
,
2014
, “
MHD Free Convection Within Trapezoidal Cavity With Non-Uniformly Heated Bottom Wall
,”
Int. J. Heat Mass Transfer
,
69
, pp.
327
336
.10.1016/j.ijheatmasstransfer.2013.10.035
14.
Natarajan
,
E.
,
Roy
,
S.
, and
Basak
,
T.
,
2007
, “
Effect of Various Thermal Boundary Conditions on Natural Convection in a Trapezoidal Cavity With Linearly Heated Side Wall(s)
,”
Numer. Heat Transfer Part B
,
52
(
6
), pp.
551
568
.10.1080/10407790701563623
15.
Natarajan
,
E.
,
Basak
,
T.
, and
Roy
,
S.
,
2008
, “
Natural Convection Flows in a Trapezoidal Enclosure With Uniform and Non-Uniform Heating of Bottom Wall
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
747
756
.10.1016/j.ijheatmasstransfer.2007.04.027
16.
Lasfer
,
K.
,
Bouzaiane
,
M.
, and
Lili
,
T.
,
2010
, “
Numerical Study of Laminar Natural Convection in a Side-Heated Trapezoidal Cavity at Various Inclined Heated Sidewalls
,”
Heat Transfer Eng.
,
31
(
5
), pp.
362
373
.10.1080/01457630903373165
17.
Hussein
,
K.
,
Lioua
,
K.
,
Chand
,
R.
,
Sivasankaran
,
S.
,
Nikbakhti
,
R.
,
Li
,
D.
,
Naceur
,
B. M.
, and
Habib
,
B. A.
,
2016
, “
Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity With an Isothermal Bottom Wall
,”
Alexandria Eng. J.
,
55
(
2
), pp.
741
755
.10.1016/j.aej.2016.01.004
18.
Rahaman
,
M. M.
,
Bhowmick
,
S.
,
Ghosh
,
B. P.
,
Xu
,
F.
,
Mondal
,
R. N.
, and
Saha
,
S. C.
,
2024
, “
Transient Natural Convection Flows and Heat Transfer in a Thermally Stratified Air-Filled Trapezoidal Cavity
,”
Therm. Sci. Eng. Prog.
,
47
, p.
102377
.10.1016/j.tsep.2023.102377
19.
Hinojosa
,
J. F.
,
Estrada
,
C. A.
,
Cabanillas
,
R. E.
, and
Alvarez
,
G.
,
2005
, “
Numerical Study of Transient and Steady-State Natural Convection and Surface Thermal Radiation in a Horizontal Square Open Cavity
,”
Numer. Heat Transfer Part A
,
48
(
2
), pp.
179
196
.10.1080/10407780590948936
20.
Hinojosa
,
J. F.
,
Cabanillas
,
R. E.
,
Alvarez
,
G.
, and
Estrada
,
C. E.
,
2005
, “
Nusselt Number for the Natural Convection and Surface Thermal Radiation in a Square Tilted Open Cavity
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1184
1192
.10.1016/j.icheatmasstransfer.2005.05.007
21.
Chan
,
Y. L.
, and
Tien
,
C. L.
,
1985
, “
A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities
,”
Int. J. Heat Mass Transfer
,
28
(
3
), pp.
603
612
.10.1016/0017-9310(85)90182-6
22.
Saxena
,
A.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Flow and Heat Transfer Characteristic of an Open Cubic Cavity With Different Inclinations
,”
Phys. Fluids
,
30
(
8
), p.
087101
.10.1063/1.5040698
You do not currently have access to this content.