Abstract

The influence of complex pore architecture, its characteristic length, and the contrast between compressed and uncompressed open-cell foam structures in forced convection are explored experimentally. Air-flow (Pr ∼ 0.71; 300 < Re < 10,000) data is presented and a critical issue of the appropriate definition of the hydraulic diameter, especially with foams of different pores/inch (ppi) and compressions, is addressed. Instead of the usual characterization, fin theory is applied and for this, the foam void volume structure is precision mapped by micro-CT scans. The veracity of defining the hydraulic diameter as 4× void volume divided by wetted area is supported by forced convection heat transfer results for different uncompressed and compressed metallic (aluminum) foam cores. All foams promote higher heat transfer coefficients, albeit accompanied with greater pressure drop. While the latter increases with foam ppi and compression (decreasing porosity), the former has a more complex interplay with these factors along with surface area changes and ligament fin effects. This scales with thermally effective surface area density βe (product of area density and overall fin effectiveness), and the overall convective-conductance of the foam (product of empty-duct-based heat transfer coefficient ho and βe) increases. The consequent enhancement, when evaluated by a modified volume goodness factor figure of merit, shows that the 40 ppi compressed foam (×3-in-x) performance is the highest (∼ 15–45 times an empty duct for the same fan power) with significant reduction in the volume of a heat exchanger.

References

1.
Dukhan
,
N.
, ed.,
2013
,
Metal Foams: Fundamentals and Applications
,
DEStech Publications Inc
.,
Lancaster, PA
.
2.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
New York, NY
.
3.
Manglik
,
R. M.
,
2003
, “
Heat Transfer Enhancement
,”
Heat Transfer Handbook
,
A.
Bejan
, and
A. D.
Kraus
, eds.,
Wiley
,
Hoboken, NJ
, Chap.
14
.
4.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
5.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
6.
Albanakis
,
C.
,
Missirlis
,
D.
,
Michailidis
,
N.
,
Yakinthos
,
K.
,
Goulas
,
A.
,
Omar
,
H.
,
Tsipas
,
D.
, and
Granier
,
B.
,
2009
, “
Experimental Analysis of the Pressure Drop and Heat Transfer Through Metal Foams Used as Volumetric Receivers Under Concentrated Solar Radiation
,”
Exp. Therm. Fluid Sci.
,
33
(
2
), pp.
246
252
.10.1016/j.expthermflusci.2008.08.007
7.
Azzi
,
W.
,
Roberts
,
W. L.
, and
Rabiei
,
A.
,
2007
, “
A Study on Pressure Drop and Heat Transfer in Open Cell Metal Foams for Jet Engine Applications
,”
Mater. Des.
,
28
(
2
), pp.
569
574
.10.1016/j.matdes.2005.08.002
8.
Chen
,
J.
,
Yang
,
D.
,
Jiang
,
J.
,
Ma
,
A.
, and
Song
,
D.
,
2014
, “
Research Progress of Phase Change Materials (PCMs) Embedded With Metal Foam (a Review)
,”
Procedia Mater. Sci.
,
4
, pp.
389
394
.10.1016/j.mspro.2014.07.579
9.
Ichikawa
,
Y.
, and
Selvadurai
,
A. P. S.
,
2012
,
Transport Phenomena in Porous Media
,
Springer-Verlag
,
Berlin, Germany
.
10.
Vafai
,
K.
, and
Kim
,
S. J.
,
1989
, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
4
), pp.
1103
1106
.10.1115/1.3250779
11.
Vafai
,
K.
, and
Kim
,
S. J.
,
1995
, “
Discussion: Forced Convection in a Porous Channel With Localized Heat Sources
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
4
), pp.
1097
1098
.10.1115/1.2836294
12.
Lage
,
J. L.
,
1998
, “
The Fundamental Theory of Flow Through Permeable Media From Darcy to Turbulence
,”
Transport Phenomena in Porous Media
,
D. B.
Ingham
, and
I.
Pop
, eds.,
Elsevier
,
Oxford, UK
.
13.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
14.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
15.
Bonnet
,
J.-P.
,
Topin
,
F.
, and
Tadrist
,
L.
,
2008
, “
Flow Laws in Metal Foams: Compressibility and Pore Size Effects
,”
Transp. Porous Media
,
73
(
2
), pp.
233
254
.10.1007/s11242-007-9169-5
16.
Lage
,
J. L.
,
Krueger
,
P. S.
, and
Narasimhan
,
A.
,
2005
, “
Protocol for Measuring Permeability and Form Coefficient of Porous Media
,”
Phys. Fluids
,
17
(
8
), p.
088101
.10.1063/1.1979307
17.
Bavandla
,
K. C.
, and
Srinivasan
,
V.
,
2024
, “
Rayleigh–Bénard Convection in a Gas-Saturated Porous Medium at Low Darcy Numbers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
5
), p.
051001
.10.1115/1.4064327
18.
Alam
,
P.
, and
Madanan
,
U.
,
2024
, “
Effect of Finite Thermal Conductivity Bounding Walls on Darcy–Bénard Convection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
5
), p.
052701
.10.1115/1.4064687
19.
Nithyanandam
,
K.
, and
Singh
,
P.
,
2023
, “
Enhanced Forced Convection Through Thin Metal Foams Placed in Rectangular Ducts
,”
Heat Transfer Eng.
,
44
(
10
), pp.
837
852
.10.1080/01457632.2022.2102960
20.
Chung
,
J. N.
,
Tully
,
L.
,
Kim
,
J. H.
,
Jones
,
G. W.
, and
Watkins
,
W.
,
2006
, “
Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engines
,”
AIAA
Paper No. AIAA-2006-5050.10.2514/6.AIAA-2006-5050
21.
Su
,
Y.
,
2023
, “
Bridging Pore Scale and Macroscopic Scale Foam Structure Enhanced Channel Flow Cooling With Three-Dimensional Mesoscale Simulations
,”
Int. J. Heat Mass Transfer
,
208
, p.
124087
.10.1016/j.ijheatmasstransfer.2023.124087
22.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset-Strip-Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
23.
Lin
,
K.-T.
,
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2023
, “
Revisiting Forced Convective Enhanced Heat Transfer in Offset- Strip-Fin Cores and Rationalized Performance Prediction Correlations
,”
ASME J. Heat Mass Transfer–Trans. ASME
,
145
(
9
), p.
091003
.10.1115/1.4062567
24.
Huzayyin
,
O. A.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2010
, “
Low Reynolds Number Air-Flow Heat Transfer in Trapezoidally Corrugated Perforated Plate-Fin Ducts
,”
ASHRAE Trans.
,
116
(
2
), pp.
339
346
.https://go.gale.com/ps/i.do?id=GALE%7CA250825186&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00012505&p=AONE&sw=w&userGroupName=anon%7E1b2e243d&aty=open-web-entry
25.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2021
, “
Characterization and Scaling of Forced Convective Swirl in Sinusoidal Wavy-Plate-Fin Cores of Compact Heat Exchangers
,”
ASME J. Heat Transfer–Trans. ASME
,
143
(
2
), p.
021901
.10.1115/1.4048921
26.
Shi
,
D.
,
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2023
, “
Experimental and Computational Study of Enhanced Forced Convection Heat Transfer in Novel Slotted Wavy-Plate-Fin Channels
,”
ASME J. Heat Mass Transfer–Trans. ASME
,
145
(
4
), p.
041801
.10.1115/1.4055763
27.
Kreith
,
F.
, and
Manglik
,
R. M.
,
2018
,
Principles of Heat Transfer
, 8th ed.,
Cengage Learning
,
Boston, MA
.
28.
Manglik
,
R. M.
,
Huzayyin
,
O. A.
, and
Jog
,
M. A.
,
2011
, “
Fin Effects in Flow Channels of Plate-Fin Compact Heat Exchanger Cores
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041004
.10.1115/1.4004844
29.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
30.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
31.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
32.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
33.
Sadeghi
,
E.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Thermal Conductivity and Contact Resistance of Metal Foams
,”
J. Phys. D: Appl. Phys.
,
44
(
12
), p.
125406
.10.1088/0022-3727/44/12/125406
34.
Lemlich
,
R.
,
1978
, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
,
64
(
1
), pp.
107
110
.10.1016/0021-9797(78)90339-9
35.
Shah
,
R. K.
, and
Sekulić
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
,
New York
.
36.
Manglik
,
R. M.
,
2018
, “
Enhancement of Convective Heat Transfer
,”
Handbook of Thermal Science and Engineering
,
F. A.
Kulacki
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
447
477
.
37.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
,
New York
.
38.
Manglik
,
R. M.
,
1996
, “
Plate Heat Exchangers for Process Industry Applications: Enhanced Thermal-Hydraulic Characteristics of Chevron Plates
,”
Process, Enhanced, and Multiphase Heat Transfer, R.M. Manglik
,
A. D.
Kraus
, ed.,
Begell House
,
New York
, pp.
267
276
.
39.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
40.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, 2nd ed.,
University Science Books
,
Sausalito, CA
.
41.
Bergles
,
A. E.
,
Blumenkrantz
,
A. R.
, and
Taborek
,
J.
,
1974
, “
Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
International Heat Transfer Conference, Heat Transfer 1974
,
The Japan Society of Mechanical Engineers
,
Tokyo, Japan
.
42.
Marner
,
W. J.
,
Bergles
,
A. E.
, and
Chenoweth
,
J. M.
,
1983
, “
On the Presentation of Performance Data for Enhanced Tubes Used in Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Mass Transfer–Trans. ASME
,
105
(
2
), pp.
358
365
.10.1115/1.3245586
43.
Yerra
,
K. K.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2006
, “
Optimization of Heat Transfer Enhancement in Single-Phase Tubeside Flows With Twisted-Tape Inserts
,”
Int. J. Heat Exchangers
,
8
(
1
), pp.
117
138
.https://www.researchgate.net/publication/279706405_Optimization_of_heat_transfer_enhancement_in_single-phase_tubeside_flows_with_twisted-tape_inserts
You do not currently have access to this content.