Abstract

An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.

References

1.
Ma
,
B.
,
Guye
,
K.
,
Dogruoz
,
B.
, and
Agonafer
,
D.
,
2021
, “
Molecular Dynamics Simulations of Thin-Film Evaporation: The Influence of Interfacial Thermal Resistance on a Graphene-Coated Heated Silicon Substrate
,”
Appl. Therm. Eng.
,
195
, p.
117142
.10.1016/j.applthermaleng.2021.117142
2.
Ma
,
H.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
3.
Huang
,
C.
,
Lin
,
W.-K.
, and
Chuang
,
Y.-L.
,
2017
, “
Experimental Investigation of Loop Heat Pipe Applied in a Railing-Type Collector Solar Water Heater
,”
Heat Transfer Res.
,
48
(
13
), pp.
1217
1236
.10.1615/HeatTransRes.2017014740
4.
Ma
,
H.
,
Borgmeyer
,
B.
,
Cheng
,
P.
, and
Zhang
,
Y.
,
2008
, “
Heat Transport Capability in an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
8
), p.
081501
.10.1115/1.2909081
5.
Xian
,
H.
,
Liu
,
D.-Y.
,
Yang
,
Y.
,
Shang
,
F.
, and
Du
,
X.
,
2007
, “
Study on the Heat Transfer Enhancement of Oscillating-Flow Heat Pipe by Pulse Heating
,”
J. Enhanced Heat Transfer
,
14
(
1
), pp.
53
64
.10.1615/JEnhHeatTransf.v14.i1.30
6.
Xiao
,
L.
, and
Cao
,
Y.
,
2012
, “
Recent Advances in Pulsating Heat Pipes and Its Derivatives
,”
J. Enhanced Heat Transfer
,
19
(
3
), pp.
213
231
.10.1615/JEnhHeatTransf.2012001896
7.
Akachi
,
H.
,
1993
, “
Structure of Micro-Heat Pipe
,” U.S. Patent No. 5,219,020.
8.
Ma
,
H.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), p.
143116
.10.1063/1.2192971
9.
Ma
,
H.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
10.
Hao
,
T.
,
Ma
,
H.
, and
Ma
,
X.
,
2019
, “
Heat Transfer Performance of Polytetrafluoroethylene Oscillating Heat Pipe With Water, Ethanol, and Acetone as Working Fluids
,”
Int. J. Heat Mass Transfer
,
131
, pp.
109
120
.10.1016/j.ijheatmasstransfer.2018.08.133
11.
Owoola
,
M.
,
Ismael
,
L.
,
Aviles
,
A.
,
Mohammadian
,
S. K.
, and
Ma
,
H.
,
2023
, “
Experimental Investigation of Liquid Metal Droplet on the Heat Transfer Performance in an Oscillating Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
064501
.10.1115/1.4062127
12.
Xu
,
Y.
,
Xue
,
Y.
,
Qi
,
H.
, and
Cai
,
W.
,
2020
, “
Experimental Study on Heat Transfer Performance of Pulsating Heat Pipes With Hybrid Working Fluids
,”
Int. J. Heat Mass Transfer
,
157
, p.
119727
.10.1016/j.ijheatmasstransfer.2020.119727
13.
Bastakoti
,
D.
,
Zhang
,
H.
,
Li
,
D.
,
Cai
,
W.
, and
Li
,
F.
,
2018
, “
An Overview on the Developing Trend of Pulsating Heat Pipe and Its Performance
,”
Appl. Therm. Eng.
,
141
, pp.
305
332
.10.1016/j.applthermaleng.2018.05.121
14.
Nikolayev
,
V. S.
,
2021
, “
Physical Principles and State-of-the-Art of Modeling of the Pulsating Heat Pipe: A Review
,”
Appl. Therm. Eng.
,
195
, p.
117111
.10.1016/j.applthermaleng.2021.117111
15.
Rittidech
,
S.
,
Pipatpaiboon
,
N.
, and
Thongdaeng
,
S.
,
2010
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat-Pipe With Check Valves
,”
J. Mech. Sci. Technol.
,
24
(
2
), pp.
545
550
.10.1007/s12206-009-1221-7
16.
Thompson
,
S. M.
, and
Ma
,
H.
,
2015
, “
Recent Advances in Two-Phase Thermal Ground Planes
,”
Annu. Rev. Heat Transfer
,
18
, pp.
101
153
.10.1615/AnnualRevHeatTransfer.2015011163
17.
Zhao
,
J.
,
Wu
,
C.
, and
Rao
,
Z.
,
2020
, “
Numerical Study on Heat Transfer Enhancement of Closed Loop Oscillating Heat Pipe Through Active Incentive Method
,”
Int. Commun. Heat Mass Transfer
,
115
, p.
104612
.10.1016/j.icheatmasstransfer.2020.104612
18.
Smoot
,
C.
, and
Ma
,
H.
,
2014
, “
Experimental Investigation of a Three-Layer Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
5
), p.
051501
.10.1115/1.4026217
19.
Thompson
,
S. M.
,
Lu
,
H.
, and
Ma
,
H.
,
2015
, “
Thermal Spreading With Flat-Plate Oscillating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
29
(
2
), pp.
338
345
.10.2514/1.T4168
20.
Ji
,
Y.
,
Xu
,
C.
,
Ma
,
H.
, and
Xinxiang
,
P.
,
2013
, “
An Experimental Investigation of the Heat Transfer Performance of an Oscillating Heat Pipe With Copper Oxide (CuO) Microstructure Layer on the Inner Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
7
), p.
074504
.10.1115/1.4023749
21.
Thompson
,
S.
,
Cheng
,
P.
, and
Ma
,
H.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
.10.1016/j.ijheatmasstransfer.2011.04.030
22.
Hathaway
,
A.
,
Wilson
,
C.
, and
Ma
,
H.
,
2012
, “
Experimental Investigation of Uneven-Turn Water and Acetone Oscillating Heat Pipes
,”
J. Thermophys. Heat Transfer
,
26
(
1
), pp.
115
122
.10.2514/1.T3734
23.
Zhao
,
X.
,
Su
,
L.
,
Jiang
,
J.
,
Deng
,
W.
, and
Zhao
,
D.
,
2023
, “
A Review of Working Fluids and Flow State Effects on Thermal Performance of Micro-Channel Oscillating Heat Pipe for Aerospace Heat Dissipation
,”
Aerospace
,
10
(
2
), p.
179
.10.3390/aerospace10020179
24.
Fuke
,
H.
,
Abe
,
T.
,
Daimaru
,
T.
,
Inoue
,
T.
,
Kawachi
,
A.
,
Kawai
,
H.
,
Masuyama
,
Y.
, et al.,
2016
, “
Development of a Cooling System for GAPS Using Oscillating Heat Pipe
,”
Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn.
,
14
(
ists30
), pp.
Pi_17
Pi_26
.
25.
Mehta
,
K.
, and
Mehta
,
N.
,
2017
, “
Development of Flat Plate Oscillating Heat Pipe as a Heat Transfer Device
,”
Front. Heat Pipes (FHP)
,
7
(
1
), pp.
1
7
.https://www.researchgate.net/publication/318468649_DEVELOPMENT_OF_FLAT_PLATE_OSCILLATING_HEAT_PIPE_AS_A_HEAT_TRANSFER_DEVICE
26.
Boswell
,
J.
, and
Wilson
,
C. A.
,
2022
, “
Oscillating Heat Pipes Technology Roadmap
,”
AIAA
Paper No. 2022-4324.10.2514/6.2022-4324
27.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.10.1080/01457630701677114
28.
Kim
,
W.
, and
Kim
,
S. J.
,
2021
, “
Fundamental Issues and Technical Problems About Pulsating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
10
), p.
100803
.10.1115/1.4051465
29.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
An Insight Into Thermo-Hydrodynamic Coupling in Closed Loop Pulsating Heat Pipes
,”
Int. J. Therm. Sci.
,
43
(
1
), pp.
13
20
.10.1016/S1290-0729(03)00100-5
30.
Abela
,
M.
,
Mameli
,
M.
,
Nikolayev
,
V.
, and
Filippeschi
,
S.
,
2022
, “
Experimental Analysis and Transient Numerical Simulation of a Large Diameter Pulsating Heat Pipe in Microgravity Conditions
,”
Int. J. Heat Mass Transfer
,
187
, p.
122532
.10.1016/j.ijheatmasstransfer.2022.122532
31.
Miyazaki
,
Y.
,
1998
, “
Self Excited Oscillation of Slug Flow in a Micro Channel
,”
Third International Conference on Multiphase Flow
, Lyon, France, June
8
12
.
32.
Miyazaki
,
Y.
,
1999
, “
Oscillatory Flow in Oscillating Heat Pipe
,”
Proceedings of the 11th International Heat Pipe Conference
, Tokyo, Japan, Sept. 12–16, pp.
367
372
.
33.
Hosoda
,
M.
,
Nishio
,
S.
, and
Shirakashi
,
R.
,
1999
, “
Meandering Closed-Loop Heat-Transport Tube (Propagation Phenomena of Vapor Plug)
,” Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CA, Mar. 15–19, pp.
1
6
.
34.
Sakulchangsatjatai
,
P.
,
Terdtoon
,
P.
,
Wongratanaphisan
,
T.
,
Kamonpet
,
P.
, and
Murakami
,
M.
,
2004
, “
Operation Modeling of Closed-End and Closed-Loop Oscillating Heat Pipes at Normal Operating Condition
,”
Appl. Therm. Eng.
,
24
(
7
), pp.
995
1008
.10.1016/j.applthermaleng.2003.11.006
35.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
36.
Zhang
,
Y.
,
Faghri
,
A.
, and
Shafii
,
M.
,
2002
, “
Analysis of Liquid–Vapor Pulsating Flow in a U-Shaped Miniature Tube
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2501
2508
.10.1016/S0017-9310(01)00348-9
37.
Zhang
,
Y.
, and
Faghri
,
A.
,
2003
, “
Oscillatory Flow in Pulsating Heat Pipes With Arbitrary Numbers of Turns
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
340
347
.10.2514/2.6791
38.
Holley
,
B.
, and
Faghri
,
A.
,
2005
, “
Analysis of Pulsating Heat Pipe With Capillary Wick and Varying Channel Diameter
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2635
2651
.10.1016/j.ijheatmasstransfer.2005.01.013
39.
White
,
F.
, and
Majdalani
,
J.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
40.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
, Hoboken, NJ.
41.
Nishio
,
S.
, and
Wang
,
S.
,
2007
, “
Study on Miniature Oscillating Heat Pipes
,”
J. Enhanced Heat Transfer
,
14
(
2
), pp.
175
187
.10.1615/JEnhHeatTransf.v14.i2.70
42.
Su
,
Y.
,
Davidson
,
J. H.
, and
Kulacki
,
F. A.
,
2012
, “
Numerical Investigation of Fluid Flow and Heat Transfer of Oscillating Pipe Flows
,”
Int. J. Therm. Sci.
,
54
, pp.
199
208
.10.1016/j.ijthermalsci.2011.11.021
43.
Wang
,
H.
,
Yin
,
D.
, and
Ma
,
H.
,
2017
, “
Heat Transfer Analysis of a Liquid Plug Flowing in a Tube
,”
Heat Transfer Res.
,
48
(
8
), pp.
757
769
.10.1615/HeatTransRes.2016013856
44.
Sun
,
Q.
,
Qu
,
J.
,
Wang
,
Q.
, and
Yuan
,
J.
,
2017
, “
Operational Characteristics of Oscillating Heat Pipes Under Micro-Gravity Condition
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
28
36
.10.1016/j.icheatmasstransfer.2017.08.005
45.
Chicone
,
C.
,
Feng
,
Z. C.
,
Lombardo
,
S. J.
, and
Retzloff
,
D. G.
,
2022
, “
Onset of Oscillations Driven by Temperature Gradients in Oscillatory Heat Pipes
,”
J. Vib. Test. Syst. Dyn.
,
6
(
3
), pp.
247
271
.
46.
Retzloff
,
D. G.
,
Lombardo
,
S. J.
,
Feng
,
Z. C.
, and
Chicone
,
C.
,
2024
, “
Startup of Oscillating Heat Pipes Via Hopf Bifurcation
,”
Int. J. Math. Modell. Numer. Optim.
,
14
(
1
).10.1504/IJMMNO.2024.10059141
47.
Yang
,
W.
,
Huang
,
H.
, and
Yan
,
W.
,
2018
, “
Thermal Lattice Boltzmann Simulation of Evaporating Thin Liquid Film for Vapor Generation
,”
Appl. Sci.
,
8
(
5
), p.
798
.10.3390/app8050798
48.
Wang
,
X.
,
Li
,
Y.
,
Malen
,
J. A.
, and
McGaughey
,
A. J.
,
2020
, “
Assessing the Impact of Disjoining Pressure on Thin-Film Evaporation With Atomistic Simulation and Kinetic Theory
,”
Appl. Phys. Lett.
,
116
(
21
), p.
213701
.10.1063/5.0010467
49.
Ma
,
H.
,
Cheng
,
P.
,
Borgmeyer
,
B.
, and
Wang
,
Y.
,
2008
, “
Fluid Flow and Heat Transfer in the Evaporating Thin Film Region
,”
Microfluid. Nanofluid.
,
4
(
3
), pp.
237
243
.10.1007/s10404-007-0172-5
50.
Wayner
,
P.
, Jr.
,
Kao
,
Y.
, and
LaCroix
,
L.
,
1976
, “
The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
487
492
.10.1016/0017-9310(76)90161-7
51.
Ma
,
H.
, and
Peterson
,
G.
,
1997
, “
Temperature Variation and Heat Transfer in Triangular Grooves With an Evaporating Film
,”
J. Thermophys. Heat Transfer
,
11
(
1
), pp.
90
97
.10.2514/2.6205
52.
Wong
,
T.
,
Tong
,
B.
,
Lim
,
S.
, and
Ooi
,
K.
,
1999
, “
Theoretical Modeling of Pulsating Heat Pipe
,”
Proceedings of the 11th International Heat Pipe Conference
, Tokyo, Japan, Sept. 12–16,
pp.
159
163
.
53.
Zhang
,
Y.
, and
Faghri
,
A.
,
2002
, “
Heat Transfer in a Pulsating Heat Pipe With Open End
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
755
764
.10.1016/S0017-9310(01)00203-4
54.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1995
, “
Heat Transfer During Evaporation on Capillary-Grooved Structures of Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
117
(
3
), pp.
740
747
.10.1115/1.2822638
55.
Shafii
,
M.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.10.1108/09615530210434304
56.
Dobson
,
R. T.
,
2004
, “
Theoretical and Experimental Modelling of an Open Oscillatory Heat Pipe Including Gravity
,”
Int. J. Therm. Sci.
,
43
(
2
), pp.
113
119
.10.1016/j.ijthermalsci.2003.05.003
57.
Das
,
S. P.
,
Nikolayev
,
V. S.
,
Lefevre
,
F.
,
Pottier
,
B.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2010
, “
Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3905
3913
.10.1016/j.ijheatmasstransfer.2010.05.009
58.
Das
,
S. P.
,
Lefevre
,
F. D R.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2011
, “
Thermally Induced Oscillatory Two-Phase Flow in a Mini-Channel: Towards Understanding Pulsating Heat Pipes
,”
ASME
Paper No. ICNMM2011-58107.10.1115/ICNMM2011-58107
59.
Nikolayev
,
V. S.
,
2011
, “
A Dynamic Film Model of the Pulsating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
8
), p.
081504
.10.1115/1.4003759
60.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Effects of Film Evaporation and Condensation on Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
4
), p.
042901
.10.1115/1.4002780
61.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Thermally-Induced Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
J. Enhanced Heat Transfer
,
18
(
3
), pp.
177
190
.10.1615/JEnhHeatTransf.v18.i3.10
62.
Mameli
,
M.
,
Marengo
,
M.
, and
Zinna
,
S.
,
2012
, “
Numerical Model of a Multi-Turn Closed Loop Pulsating Heat Pipe: Effects of the Local Pressure Losses Due to Meanderings
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1036
1047
.10.1016/j.ijheatmasstransfer.2011.10.006
63.
Darby
,
R.
,
2001
, “
Correlate Pressure Drops Through Fittings
,”
Chem. Eng.
,
108
(
4
), p.
127
.https://batou2013.wordpress.com/wpcontent/uploads/2018/08/mc3a9todo-de-las-3k.pdf
64.
Carey
,
V. P.
,
1992
,
An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
Hemisphere
,
Washington, DC
, pp.
112
120
.
65.
Charoensawan
,
P.
, and
Terdtoon
,
P.
,
2008
, “
Thermal Performance of Horizontal Closed-Loop Oscillating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
460
466
.10.1016/j.applthermaleng.2007.05.007
66.
Kim
,
J.-S.
,
Bui
,
N. H.
,
Jung
,
H.-S.
, and
Lee
,
W.-H.
,
2003
, “
The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe
,”
KSME Int. J.
,
17
(
10
), pp.
1533
1542
.10.1007/BF02982332
67.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
.10.1016/j.applthermaleng.2007.01.033
68.
Senjaya
,
R.
, and
Inoue
,
T.
,
2013
, “
Oscillating Heat Pipe Simulation Considering Bubble Generation Part I: Presentation of the Model and Effects of a Bubble Generation
,”
Int. J. Heat Mass Transfer
,
60
, pp.
816
824
.10.1016/j.ijheatmasstransfer.2013.01.059
69.
Senjaya
,
R.
, and
Inoue
,
T.
,
2014
, “
Oscillating Heat Pipe Simulation Considering Dryout Phenomena
,”
Heat Mass Transfer
,
50
(
10
), pp.
1429
1441
.10.1007/s00231-014-1354-9
70.
Peng
,
H.
,
Pai
,
P. F.
, and
Ma
,
H.
,
2014
, “
Nonlinear Thermomechanical Finite-Element Modeling, Analysis and Characterization of Multi-Turn Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
69
, pp.
424
437
.10.1016/j.ijheatmasstransfer.2013.10.041
71.
Daimaru
,
T.
,
Nagai
,
H.
,
Ando
,
M.
,
Tanaka
,
K.
,
Okamoto
,
A.
, and
Sugita
,
H.
,
2017
, “
Comparison Between Numerical Simulation and On-Orbit Experiment of Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
109
, pp.
791
806
.10.1016/j.ijheatmasstransfer.2017.01.078
72.
Drolen
,
B. L.
, and
Smoot
,
C. D.
,
2017
, “
Performance Limits of Oscillating Heat Pipes: Theory and Validation
,”
J. Thermophys. Heat Transfer
,
31
(
4
), pp.
920
936
.10.2514/1.T5105
73.
Rao
,
M.
,
Lefèvre
,
F.
,
Czujko
,
P.-C.
,
Khandekar
,
S.
, and
Bonjour
,
J.
,
2017
, “
Numerical and Experimental Investigations of Thermally Induced Oscillating Flow Inside a Capillary Tube
,”
Int. J. Therm. Sci.
,
115
, pp.
29
42
.10.1016/j.ijthermalsci.2017.01.009
74.
Bae
,
J.
,
Lee
,
S. Y.
, and
Kim
,
S. J.
,
2017
, “
Numerical Investigation of Effect of Film Dynamics on Fluid Motion and Thermal Performance in Pulsating Heat Pipes
,”
Energy Convers. Manage.
,
151
, pp.
296
310
.10.1016/j.enconman.2017.08.086
75.
Nemati
,
R.
, and
Shafii
,
M. B.
,
2018
, “
Advanced Heat Transfer Analysis of a U-Shaped Pulsating Heat Pipe Considering Evaporative Liquid Film Trailing From Its Liquid Slug
,”
Appl. Therm. Eng.
,
138
, pp.
475
489
.10.1016/j.applthermaleng.2018.04.064
76.
Han
,
Y.
, and
Shikazono
,
N.
,
2008
, “
Thickness of Liquid Film Formed in Slug Flow in Micro Tube
,”
Proceedings of the ECI International Conference on Heat Transfer and Fluid Flow in Microscale
, Whistler, BC, Canada, Sept. 21–26, p.
8
.http://www.feslab.iis.u-tokyo.ac.jp/Doc/han_htffm08.pdf
77.
Nguyen
,
T. T.
,
Yu
,
J.
,
Plawsky
,
J. L.
,
Wayner
,
P. C.
, Jr.
,
Chao
,
D. F.
, and
Sicker
,
R. J.
,
2018
, “
Spontaneously Oscillating Menisci: Maximizing Evaporative Heat Transfer by Inducing Condensation
,”
Int. J. Therm. Sci.
,
128
, pp.
137
148
.10.1016/j.ijthermalsci.2018.02.015
78.
Noh
,
H. Y.
, and
Kim
,
S. J.
,
2020
, “
Numerical Simulation of Pulsating Heat Pipes: Parametric Investigation and Thermal Optimization
,”
Energy Convers. Manage.
,
203
, p.
112237
.10.1016/j.enconman.2019.112237
79.
Han
,
Y.
, and
Shikazono
,
N.
,
2010
, “
The Effect of Bubble Acceleration on the Liquid Film Thickness in Micro Tubes
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
630
639
.10.1016/j.ijheatfluidflow.2010.02.002
80.
Aussillous
,
P.
, and
Quéré
,
D.
,
2000
, “
Quick Deposition of a Fluid on the Wall of a Tube
,”
Phys. Fluids
,
12
(
10
), pp.
2367
2371
.10.1063/1.1289396
81.
Han
,
D.
,
Sun
,
X.
,
Gan
,
Z.
,
Luo
,
R.
,
Pfotenhauer
,
J.
, and
Jiao
,
B.
,
2017
, “
Numerical Investigation on Pulsating Heat Pipes With Nitrogen or Hydrogen
,”
Proceedings of the IOP Conference Series: Materials Science and Engineering
, Madison, WI, July 9–13,
p.
012056
.10.1088/1757-899X/278/1/012056
82.
Daimaru
,
T.
,
Yoshida
,
S.
, and
Nagai
,
H.
,
2017
, “
Study on Thermal Cycle in Oscillating Heat Pipes by Numerical Analysis
,”
Appl. Therm. Eng.
,
113
, pp.
1219
1227
.10.1016/j.applthermaleng.2016.11.114
83.
Liang
,
Q.
,
Li
,
Y.
, and
Wang
,
Q.
,
2018
, “
Numerical Investigation of Thermal Performance of a Cryogenic Oscillating Heat Pipe
,”
Heat Transfer Res.
,
49
(
12
), pp.
1171
1183
.10.1615/HeatTransRes.2018017363
84.
Singh
,
B.
, and
Atrey
,
M.
,
2021
, “
Numerical Investigation of a Nitrogen Based Cryogenic Pulsating Heat Pipe
,”
Cryogenics
,
115
, p.
103246
.10.1016/j.cryogenics.2021.103246
85.
Sun
,
X.
,
Li
,
S.
,
Wang
,
B.
,
Jiao
,
B.
,
Pfotenhauer
,
J.
,
Miller
,
F.
, and
Gan
,
Z.
,
2022
, “
Numerical Study of the Thermal Performance of a Hydrogen Pulsating Heat Pipe
,”
Int. J. Therm. Sci.
,
172
, p.
107302
.10.1016/j.ijthermalsci.2021.107302
86.
Wang
,
X.
, and
Zhang
,
N.
,
2005
, “
Numerical Analysis of Heat Transfer in Pulsating Turbulent Flow in a Pipe
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
3957
3970
.10.1016/j.ijheatmasstransfer.2005.04.011
87.
Torii
,
S.
, and
Yang
,
W.-J.
,
1998
, “
Thermal Transport in Turbulent Couette Flows in Concentric Annuli for Various Prandtl Numbers
,”
Numer. Heat Transfer, Part A: Appl.
,
34
(
5
), pp.
537
552
.10.1080/10407789808914002
88.
Patro
,
P.
,
Gupta
,
R.
, and
Khuntia
,
A. K.
,
2015
, “
Numerical Study for the Prediction of Heat Transfer in a Pulsating Turbulent Flow in a Pipe
,”
Procedia Eng.
,
127
, pp.
854
861
.10.1016/j.proeng.2015.11.422
89.
Dreiling
,
R.
,
Zimmermann
,
S.
,
Nguyen-Xuan
,
T.
,
Schreivogel
,
P.
, and
Di Mare
,
F.
,
2022
, “
Thermal Resistance Modeling of Flat Plate Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
189
, p.
122668
.10.1016/j.ijheatmasstransfer.2022.122668
90.
Li
,
Y.
,
Eldredge
,
J. D.
,
Lavine
,
A. S.
,
Fisher
,
T. S.
, and
Drolen
,
B. L.
,
2023
, “
A Data Assimilation Model of Oscillating Heat Pipe Dynamics and Performance
,”
Joint 21st IHPC and 15th IHPS
, Melbourne, Australia, Feb.
5
9
.
91.
Drolen
,
B. L.
,
Wilson
,
C. A.
,
Taft
,
B. S.
,
Allison
,
J.
, and
Irick
,
K. W.
,
2022
, “
Advanced Structurally Embedded Thermal Spreader Oscillating Heat Pipe Micro-Gravity Flight Experiment
,”
J. Thermophys. Heat Transfer
,
36
(
2
), pp.
314
327
.10.2514/1.T6363
92.
Ansys, Inc.
,
2020
,
ANSYS Fluent Theory Guide
,
Ansys
,
Canonsburg, PA
.
93.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
94.
Lee
,
W. H.
,
1979
, “
A Pressure Iteration Scheme for Two-Phase Modeling
,”
Los Alamos Scientific Laboratory
,
Los Alamos, NM
, Report No. LA-UR
79
975
.
95.
Vo
,
D.-T.
,
Kim
,
H.-T.
,
Ko
,
J.
, and
Bang
,
K.-H.
,
2020
, “
An Experiment and Three-Dimensional Numerical Simulation of Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
150
, p.
119317
.10.1016/j.ijheatmasstransfer.2020.119317
96.
Lin
,
Z.
,
Wang
,
S.
,
Shirakashi
,
R.
, and
Zhang
,
L. W.
,
2013
, “
Simulation of a Miniature Oscillating Heat Pipe in Bottom Heating Mode Using CFD With Unsteady Modeling
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
642
656
.10.1016/j.ijheatmasstransfer.2012.09.007
97.
Wang
,
J.
,
Ma
,
H.
, and
Zhu
,
Q.
,
2015
, “
Effects of the Evaporator and Condenser Length on the Performance of Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
91
, pp.
1018
1025
.10.1016/j.applthermaleng.2015.08.106
98.
Saha
,
N.
,
Das
,
P. K.
, and
Sharma
,
P. K.
,
2014
, “
Influence of Process Variables on the Hydrodynamics and Performance of a Single Loop Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
74
, pp.
238
250
.10.1016/j.ijheatmasstransfer.2014.02.067
99.
Pouryoussefi
,
S.
, and
Zhang
,
Y.
,
2016
, “
Numerical Investigation of Chaotic Flow in a 2D Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
98
, pp.
617
627
.10.1016/j.applthermaleng.2015.12.097
100.
Jiaqiang
,
E.
,
Zhao
,
X.
,
Deng
,
Y.
, and
Zhu
,
H.
,
2016
, “
Pressure Distribution and Flow Characteristics of Closed Oscillating Heat Pipe During the Starting Process at Different Vacuum Degrees
,”
Appl. Therm. Eng.
,
93
, pp.
166
173
.10.1016/j.applthermaleng.2015.09.060
101.
Choi
,
J.
, and
Zhang
,
Y.
,
2020
, “
Numerical Simulation of Oscillatory Flow and Heat Transfer in Pulsating Heat Pipes With Multi-Turns Using OpenFOAM
,”
Numer. Heat Transfer, Part A: Appl.
,
77
(
8
), pp.
761
781
.10.1080/10407782.2020.1717202
102.
Wang
,
W.-W.
,
Wang
,
L.
,
Cai
,
Y.
,
Yang
,
G.-B.
,
Zhao
,
F.-Y.
,
Liu
,
D.
, and
Yu
,
Q.-H.
,
2020
, “
Thermo-Hydrodynamic Model and Parametric Optimization of a Novel Miniature Closed Oscillating Heat Pipe With Periodic Expansion-Constriction Condensers
,”
Int. J. Heat Mass Transfer
,
152
, p.
119460
.10.1016/j.ijheatmasstransfer.2020.119460
103.
Xie
,
F.
,
Li
,
X.
,
Qian
,
P.
,
Huang
,
Z.
, and
Liu
,
M.
,
2020
, “
Effects of Geometry and Multisource Heat Input on Flow and Heat Transfer in Single Closed-Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
168
, p.
114856
.10.1016/j.applthermaleng.2019.114856
104.
Zufar
,
M.
,
Gunnasegaran
,
P.
,
Kumar
,
H.
, and
Ng
,
K.
,
2020
, “
Numerical and Experimental Investigations of Hybrid Nanofluids on Pulsating Heat Pipe Performance
,”
Int. J. Heat Mass Transfer
,
146
, p.
118887
.10.1016/j.ijheatmasstransfer.2019.118887
105.
Patel
,
V. M.
,
Gaurav
, and
Mehta
,
H. B.
,
2017
, “
Influence of Working Fluids on Startup Mechanism and Thermal Performance of a Closed Loop Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
110
, pp.
1568
1577
.10.1016/j.applthermaleng.2016.09.017
106.
Kang
,
Z.
,
Shou
,
D.
, and
Fan
,
J.
,
2021
, “
Numerical Study of a Novel Single-Loop Pulsating Heat Pipe With Separating Walls Within the Flow Channel
,”
Appl. Therm. Eng.
,
196
, p.
117246
.10.1016/j.applthermaleng.2021.117246
107.
Kang
,
Z.
,
Shou
,
D.
, and
Fan
,
J.
,
2022
, “
Numerical Study of Single-Loop Pulsating Heat Pipe With Porous Wicking Layer
,”
Int. J. Therm. Sci.
,
179
, p.
107614
.10.1016/j.ijthermalsci.2022.107614
108.
Mucci
,
A.
,
Kholi
,
F. K.
,
Chetwynd-Chatwin
,
J.
,
Ha
,
M. Y.
, and
Min
,
J. K.
,
2021
, “
Numerical Investigation of Flow Instability and Heat Transfer Characteristics Inside Pulsating Heat Pipes With Different Numbers of Turns
,”
Int. J. Heat Mass Transfer
,
169
, p.
120934
.10.1016/j.ijheatmasstransfer.2021.120934
109.
Sagar
,
K. R.
,
Naik
,
H.
, and
Mehta
,
H. B.
,
2021
, “
Numerical Study of Liquid Nitrogen Based Pulsating Heat Pipe for Cooling Superconductors
,”
Int. J. Refrig.
,
122
, pp.
33
46
.10.1016/j.ijrefrig.2020.10.033
110.
Nerella
,
S. S.
,
Panitapu
,
B.
, and
Nakka
,
S. V. S.
,
2022
, “
Fluid Flow Analysis in a Closed Loop Pulsating Heat Pipe-Simulation Study
,”
Mater. Today: Proc.
,
65
, pp.
3558
3566
.10.1016/j.matpr.2022.06.148
111.
Ma
,
H.
,
Hanlon
,
M.
, and
Chen
,
C.-L.
,
2006
, “
An Investigation of Oscillating Motions in a Miniature Pulsating Heat Pipe
,”
Microfluid. Nanofluid.
,
2
(
2
), pp.
171
179
.10.1007/s10404-005-0061-8
112.
Pai
,
P. F.
,
Peng
,
H.
, and
Ma
,
H.
,
2013
, “
Thermomechanical Finite-Element Analysis and Dynamics Characterization of Three-Plug Oscillating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
64
, pp.
623
635
.10.1016/j.ijheatmasstransfer.2013.04.063
113.
Cheng
,
P.
,
Thompson
,
S.
,
Boswell
,
J.
, and
Ma
,
H.
,
2010
, “
An Investigation of Flat-Plate Oscillating Heat Pipes
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041009
.10.1115/1.4002726
114.
Cheng
,
P.
, and
Ma
,
H.
,
2011
, “
A Mathematical Model of an Oscillating Heat Pipe
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1037
1046
.10.1080/01457632.2011.556495
115.
Yoon
,
A.
, and
Kim
,
S. J.
,
2017
, “
Characteristics of Oscillating Flow in a Micro Pulsating Heat Pipe: Fundamental-Mode Oscillation
,”
Int. J. Heat Mass Transfer
,
109
, pp.
242
253
.10.1016/j.ijheatmasstransfer.2017.02.003
116.
Yoon
,
A.
, and
Kim
,
S. J.
,
2019
, “
Experimental and Theoretical Studies on Oscillation Frequencies of Liquid Slugs in Micro Pulsating Heat Pipes
,”
Energy Convers. Manage.
,
181
, pp.
48
58
.10.1016/j.enconman.2018.11.060
117.
Gürsel
,
G.
,
Frijns
,
A.
,
Homburg
,
F.
, and
Van Steenhoven
,
A.
,
2015
, “
A Mass-Spring-Damper Model of a Pulsating Heat Pipe With a Non-Uniform and Asymmetric Filling
,”
Appl. Therm. Eng.
,
91
, pp.
80
90
.10.1016/j.applthermaleng.2015.06.014
118.
Khandekar
,
S.
,
Dollinger
,
N.
, and
Groll
,
M.
,
2003
, “
Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes: An Experimental Study
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
707
719
.10.1016/S1359-4311(02)00237-5
119.
Yin
,
D.
,
Wang
,
H.
,
Ma
,
H.
, and
Ji
,
Y.
,
2016
, “
Operation Limitation of an Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
94
, pp.
366
372
.10.1016/j.ijheatmasstransfer.2015.11.039
120.
Tran
,
L.
,
2006
, “
From Fourier Transforms to Wavelet Analysis: Mathematical Concepts and Examples
,”
epub
.https://www.whitman.edu/documents/academics/mathematics/trandl.pdf
121.
Li, Z., Zhang, Y., and Montgomery-Smith, S., 2015, “Investigation of oscillatory flow in an oscillating heat pipe with random initial conditions,”
J. Enhanced Heat Transfer
, 22(6), pp.
485
502
.10.1615/JEnhHeatTransf.2016014587
122.
Fairley, J. D., Thompson, S. M., and Anderson, D., 2015, “Time–Frequency Analysis of Flat-Plate Oscillating Heat Pipes,”
Int. J. Therm. Sci.
, 91, pp. 113–124.10.1016/j.ijthermalsci.2015.01.001
123.
Boggess
,
A.
, and
Narcowich
,
F. J.
,
2001
,
A first Course in Wavelets With Fourier Analysis
,
Wiley
, Hoboken, NJ.
124.
Zhao
,
N.
,
Ma
,
H.
, and
Pan
,
X.
,
2011
, “
Wavelet Analysis of Oscillating Motions in an Oscillating Heat Pipe
,”
ASME
Paper No. IMECE2011-63632.10.1115/IMECE2011-63632
125.
Shimokusu
,
T. J.
,
Drolen
,
B.
,
Wilson
,
C.
,
Didion
,
J.
, and
Wehmeyer
,
G.
,
2023
, “
Strain Gauge Measurements of an Oscillating Heat Pipe From Startup to Stable Operation
,”
Appl. Therm. Eng.
,
233
, p.
121118
.10.1016/j.applthermaleng.2023.121118
126.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London Ser. A: Math., Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
127.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
01
(
1
), pp.
1
41
.10.1142/S1793536909000047
128.
Takenaka
,
N.
, and
Asano
,
H.
,
2005
, “
Quantitative Void Fraction Measurement Method by Neutron Radiography and Applications to Two-Phase Flow Researches
,”
Exp. Therm. Fluid Sci.
,
29
(
3
), pp.
393
402
.10.1016/j.expthermflusci.2004.05.016
129.
Cimbala
,
J. M.
,
Brenizer
,
J. S.
,
Chuang
,
A. P.-Y.
,
Hanna
,
S.
,
Conroy
,
C. T.
,
El-Ganayni
,
A.
, and
Riley
,
D. R.
,
2004
, “
Study of a Loop Heat Pipe Using Neutron Radiography
,”
Appl. Radiat. Isot.
,
61
(
4
), pp.
701
705
.10.1016/j.apradiso.2004.03.104
130.
Borgmeyer
,
B.
,
Wilson
,
C.
,
Winholtz
,
R.
,
Ma
,
H.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2010
, “
Heat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
6
), p.
061502
.10.1115/1.4000750
131.
Wilson
,
C.
,
Borgmeyer
,
B.
,
Winholtz
,
R.
,
Ma
,
H.
,
Jacobson
,
D.
, and
Hussey
,
D.
,
2011
, “
Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
6
), p.
061502
.10.1115/1.4003546
132.
Yoon
,
I.
,
Ma
,
H.
, and
Winholtz
,
R.
,
2013
, “
Study of the Effects of Liquid Fraction and Vapor Volume on the Fluctuating Temperature in an Oscillating Heat Pipe Using Neutron Imaging
,”
Heat Transfer Res.
,
44
(
1
), pp.
43
57
.10.1615/HeatTransRes.2012005965
133.
Smoot
,
C.
,
Ma
,
H.
,
Winholtz
,
R.
,
Jacobson
,
D. L.
, and
Hussey
,
D. S.
,
2013
, “
Thermal and Visual Observation of a Hybrid Heat Pipe
,”
Heat Transfer Res.
,
44
(
1
), pp.
31
42
.10.1615/HeatTransRes.2012005952
134.
Núñez
,
R.
,
Mohammadian
,
S. K.
,
Rupam
,
T. H.
,
Mohammed
,
R. H.
,
Huang
,
G.
, and
Ma
,
H.
,
2024
, “
Machine Learning for Modeling Oscillating Heat Pipes: A Review
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
4
), p. 040801.10.1115/1.4064597
135.
Khandekar
,
S.
,
Cui
,
X.
, and
Groll
,
M.
,
2002
, “
Thermal Performance Modeling of Pulsating Heat Pipes by Artificial Neural Network
,”
Proceedings of the 12th International Heat Pipe Conference
, Moscow, Russia, pp.
215
219
.https://home.iitk.ac.in/~samkhan/Bio_data/publications/Khandekar_Conf_7.pdf
136.
Jokar
,
A.
,
Godarzi
,
A. A.
,
Saber
,
M.
, and
Shafii
,
M. B.
,
2016
, “
Simulation and Optimization of a Pulsating Heat Pipe Using Artificial Neural Network and Genetic Algorithm
,”
Heat Mass Transfer
,
52
(
11
), pp.
2437
2445
.10.1007/s00231-016-1759-8
137.
Jalilian
,
M.
,
Kargarsharifabad
,
H.
,
Abbasi Godarzi
,
A.
,
Ghofrani
,
A.
, and
Shafii
,
M.
,
2016
, “
Simulation and Optimization of Pulsating Heat Pipe Flat-Plate Solar Collectors Using Neural Networks and Genetic Algorithm: A Semi-Experimental Investigation
,”
Clean Technol. Environ. Policy
,
18
(
7
), pp.
2251
2264
.10.1007/s10098-016-1143-x
138.
Patel
,
V. M.
, and
Mehta
,
H.
,
2016
, “
Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
,”
World Acad. Sci. Eng. Technol.-Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng
,
10
(
10
), pp.
1814
1817
.https://www.researchgate.net/publication/316284161_Artificial_Neural_Network_Modeling_of_a_Closed_Loop_Pulsating_Heat_Pipe
139.
Wang
,
X.
,
Li
,
B.
,
Yan
,
Y.
,
Gao
,
N.
, and
Chen
,
G.
,
2019
, “
Predicting of Thermal Resistances of Closed Vertical Meandering Pulsating Heat Pipe Using Artificial Neural Network Model
,”
Appl. Therm. Eng.
,
149
, pp.
1134
1141
.10.1016/j.applthermaleng.2018.12.142
140.
Wen
,
J.
,
2021
, “
Thermal Resistance Modeling of Oscillating Heat Pipes Filled With Acetone by Using Artificial Neural Network
,”
J. Therm. Anal. Calorim.
,
144
(
5
), pp.
1873
1881
.10.1007/s10973-020-10536-x
141.
Malekan
,
M.
,
Khosravi
,
A.
,
Goshayeshi
,
H. R.
,
Assad
,
M. E. H.
, and
Garcia Pabon
,
J.
,
2019
, “
Thermal Resistance Modeling of Oscillating Heat Pipes for Nanofluids by Artificial Intelligence Approach
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
7
), p.
072402
.10.1115/1.4043569
142.
Qian
,
N.
,
Wang
,
X.
,
Fu
,
Y.
,
Zhao
,
Z.
,
Xu
,
J.
, and
Chen
,
J.
,
2020
, “
Predicting Heat Transfer of Oscillating Heat Pipes for Machining Processes Based on Extreme Gradient Boosting Algorithm
,”
Appl. Therm. Eng.
,
164
, p.
114521
.10.1016/j.applthermaleng.2019.114521
143.
Yoon
,
A.
, and
Kim
,
S. J.
,
2021
, “
A Deep-Learning Approach for Predicting Oscillating Motion of Liquid Slugs in a Closed-Loop Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
181
, p.
121860
.10.1016/j.ijheatmasstransfer.2021.121860
144.
Koyama
,
R.
,
Inokuma
,
K.
,
Murata
,
A.
,
Iwamoto
,
K.
, and
Saito
,
H.
,
2022
, “
Machine Learning-Based Prediction of Heat Transport Performance in Oscillating Heat Pipe
,”
J. Therm. Sci. Technol.
,
17
(
1
), p.
21
00413
.10.1299/jtst.21-00413
145.
Loyola-Fuentes
,
J.
,
Pietrasanta
,
L.
,
Marengo
,
M.
, and
Coletti
,
F.
,
2022
, “
Machine Learning Algorithms for Flow Pattern Classification in Pulsating Heat Pipes
,”
Energies
,
15
(
6
), p.
1970
.10.3390/en15061970
146.
Hu
,
H.
,
Weinberger
,
C. R.
, and
Sun
,
Y.
,
2014
, “
Effect of Nanostructures on the Meniscus Shape and Disjoining Pressure of Ultrathin Liquid Film
,”
Nano Lett.
,
14
(
12
), pp.
7131
7137
.10.1021/nl5037066
147.
Dai
,
B.
,
Leal
,
L. G.
, and
Redondo
,
A.
,
2008
, “
Disjoining Pressure for Nonuniform Thin Films
,”
Phys. Rev. E
,
78
(
6
), p.
061602
.10.1103/PhysRevE.78.061602
148.
Bhatt
,
D.
,
Newman
,
J.
, and
Radke
,
C.
,
2002
, “
Molecular Simulation of Disjoining-Pressure Isotherms for Free Liquid, Lennard-Jones Thin Films
,”
J. Phys. Chem. B
,
106
(
25
), pp.
6529
6537
.10.1021/jp0202136
149.
Yu
,
J.
, and
Wang
,
H.
,
2012
, “
A Molecular Dynamics Investigation on Evaporation of Thin Liquid Films
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1218
1225
.10.1016/j.ijheatmasstransfer.2011.09.035
150.
Onishi
,
H.
,
Sawairi
,
K.
, and
Tadam
,
Y.
,
2016
, “
Numerical Study on Heat Transport Characteristics in Oscillating Heat Pipe Under Small Temperature Difference
,”
Proceedings of the First Pacific Rim Thermal Engineering Conference
, Hawaii's Big Island, Mar. 13–17, p.
15119
.
151.
Jo
,
J.
,
Kim
,
J.
, and
Kim
,
S. J.
,
2019
, “
Experimental Investigations of Heat Transfer Mechanisms of a Pulsating Heat Pipe
,”
Energy Convers. Manage.
,
181
, pp.
331
341
.10.1016/j.enconman.2018.12.027
152.
NASA
, 2024, “
Physical Sciences Informatics (PSI)
,” Washington, DC, accessed June 17, 2024, https://www.nasa.gov/PSI
153.
Taft
,
B. S.
, and
Smith
,
S. M.
,
2017
, “
ASETS-II Oscillating Heat Pipe Space Flight Experiment: Ground Truth Results
,”
ASME
Paper No. HT2017-4706.10.1115/HT2017-4706
154.
Chiaramonte
,
F.
,
McQuillen
,
J.
,
Nahra
,
H.
,
Manoharan
,
P.
,
Vanhala
,
H.
,
Motil
,
B. J.
,
Kim
,
J.
,
Carey
,
V.
,
Anderson
,
W. G.
, and
Plawsky
,
J.
,
2019
, “
2019 NASA Division of Space Life and Physical Sciences Research and Applications Fluid Physics Workshop Report
,”
Proceedings of the 2019 NASA SLPSRA Fluid Physics Workshop Report
, Cleveland, OH, Oct. 16–17, pp.
1
66
.https://ntrs.nasa.gov/api/citations/20205001256/downloads/CP-20205001256.pdf
155.
Taft
,
B.-S.
, and
Irick
,
K.-W.
,
2019
, “
ASETS-II Oscillating Heat Pipe Space Flight Experiment: The First Six Months on Orbit
,”
Front. Heat Mass Transfer
,
12
(
1
), pp.
1
7
.10.5098/hmt.12.24
156.
Jun
,
S.
, and
Kim
,
S. J.
,
2016
, “
Comparison of the Thermal Performances and Flow Characteristics Between Closed-Loop and Closed-End Micro Pulsating Heat Pipes
,”
Int. J. Heat Mass Transfer
,
95
, pp.
890
901
.10.1016/j.ijheatmasstransfer.2015.12.064
You do not currently have access to this content.