Abstract

An experimental investigation was carried out on high porosity metal foams subjected to array jet impingement with an objective to develop enhanced heat transfer configurations. In this study, we propose an integrated thermal management system (TMS) aimed toward leveraging the conjugate heat transfer capabilities of target plate, metal foam, and the jet plate—all made from aluminum and assembled such that a proper contact between them can be established. Steady-state heat transfer experiments were carried out for 10 and 20 pores per inch (PPI) aluminum foams of 0.93 porosity. Both metal foams were 12.7-mm thick. The normalized jet-to-jet spacing was varied from 2 to 12 times the jet diameter, while the jet diameter was fixed. The ratio of the jet plate thickness and jet diameter (nozzle aspect ratio) was 6.35, which ensured proper development of jets inside the nozzles. Experiments were conducted over a wide range of Reynolds number (based on jet diameter) varied from 100 to 5000. The obtained convective heat transfer coefficient for different configuration was evaluated in context with pressure drop. The analysis of experimental results reveal that large open area ratio jets combined with high porosity metal foams provide highly efficient and high-performance cooling for the investigated range of Reynolds numbers.

References

1.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
2.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
3.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
4.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
5.
Li
,
Y.
,
Gong
,
L.
,
Xu
,
M.
, and
Joshi
,
Y.
,
2021
, “
A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
030801
.10.1115/1.4048861
6.
Singh
,
P.
,
Nithyanandam
,
K.
, and
Mahajan
,
R. L.
,
2020
, “
An Experimental and Numerical Investigation of Forced Convection in High Porosity Aluminum Foams Subjected to Jet Array Impingement in Channel-Flow
,”
Int. J. Heat Mass Transfer
,
149
, p.
119107
.10.1016/j.ijheatmasstransfer.2019.119107
7.
Panse
,
S. S.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Thermal Hydraulic Performance Augmentation by High-Porosity Thin Aluminum Foams Placed in High Aspect Ratio Ducts
,”
Appl. Therm. Eng.
,
161
, p.
114162
.10.1016/j.applthermaleng.2019.114162
8.
Nithyanandam
,
K.
, and
Singh
,
P.
,
2023
, “
Enhanced Forced Convection Through Thin Metal Foams Placed in Rectangular Ducts
,”
Heat Transfer Eng.
,
44
(
10
), pp.
837
852
.10.1080/01457632.2022.2102960
9.
Panse
,
S. S.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Air-Based Cooling in High Porosity, Aluminum Foams for Compact Electronics Cooling
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
376
383
.10.1109/ITHERM.2019.8757458
10.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.10.1016/S0017-9310(02)00089-3
11.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2005
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.10.1115/1.2229225
12.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High-Porosity Aluminum Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
5
), p.
030801
.10.1115/1.4045640
13.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
,
1996
, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2915
2923
.10.1016/0017-9310(95)00382-7
14.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
064001
.10.1115/1.4049496
15.
Hansen
,
L. G.
, and
Webb
,
B. W.
,
1993
, “
Air Jet Impingement Heat Transfer From Modified Surfaces
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
989
997
.10.1016/S0017-9310(05)80283-2
16.
Ji
,
Y.
,
Singh
,
P.
,
Ekkad
,
S. V.
, and
Zang
,
S.
,
2017
, “
Effect of Crossflow Regulation by Varying Jet Diameters in Streamwise Direction on Jet Impingement Heat Transfer Under Maximum Crossflow Condition
,”
Numer. Heat Transfer, Part A
,
72
(
8
), pp.
579
599
.10.1080/10407782.2017.1394136
17.
Jeng
,
T.-M.
, and
Tzeng
,
S.-C.
,
2005
, “
Numerical Study of Confined Slot Jet Impinging on Porous Metallic Foam Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4685
4694
.10.1016/j.ijheatmasstransfer.2005.06.032
18.
Byon
,
C.
,
2015
, “
Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet Under Fixed Pumping Power
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1056
1060
.10.1016/j.ijheatmasstransfer.2015.01.025
19.
Sambamurthy
,
V. S.
,
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2020
, “
Array Jet Impingement on High Porosity Thin Metal Foams: Effect of Foam Height, Pore-Density, and Spent Air Crossflow Scheme on Flow Distribution and Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
11
), p.
112301
.10.1115/1.4047560
20.
Kim
,
S. Y.
,
Lee
,
M. H.
, and
Lee
,
K.-S.
,
2005
, “
Heat Removal by Aluminum-Foam Heat Sinks in a Multi-Air Jet Impingement
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
142
148
.10.1109/TCAPT.2004.843169
21.
Madhavan
,
S.
,
Singh
,
P.
, and
Ekkad
,
S.
,
2019
, “
Jet Impingement Heat Transfer Enhancement by Packing High-Porosity Thin Metal Foams Between Jet Exit Plane and Target Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061016
.10.1115/1.4043470
22.
Yogi
,
K.
,
Godase
,
M. M.
,
Shetty
,
M.
,
Krishnan
,
S.
, and
Prabhu
,
S. V.
,
2020
, “
Experimental Investigation on the Local Heat Transfer With a Circular Jet Impinging on a Metal Foamed Flat Plate
,”
Int. J. Heat Mass Transfer
,
162
, p.
120405
.10.1016/j.ijheatmasstransfer.2020.120405
23.
Singh
,
P.
,
2022
, “
Effects of Jet-to-Target Spacing on Primary and Secondary Peak Heat Transfer for an Obliquely Impinging Jet
,”
Int. J. Heat Mass Transfer
,
191
, p.
122831
.10.1016/j.ijheatmasstransfer.2022.122831
24.
Jeng
,
T.-M.
, and
Tzeng
,
S.-C.
,
2007
, “
Experimental Study of Forced Convection in Metallic Porous Block Subject to a Confined Slot Jet
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1242
1250
.10.1016/j.ijthermalsci.2007.01.007
25.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
26.
Calmidi
,
V. V.
,
1998
,
Transport Phenomena in High Porosity Fibrous Metal Foams
,
University of Colorado
, Boulder, CO.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.