Abstract

This study sheds light on unsteady heat and fluid flow problems over stretching and shrinking surfaces, enriching our understanding of these complex phenomena. We derive two mathematical models using a rigorous approach. The first model aligns with the model commonly employed by researchers in this field, but its steady-state solution remains trivial. The second model, introduced in this work, demonstrably captures the physically relevant steady-state solutions well-studied in the literature. Notably, we introduce new similarity solutions for the temperature field specifically within the first model. We further demonstrate that a uniform wall temperature condition leads to the optimal heat transfer rate. While similarity solutions can be derived for specific cases with the second model, nonsimilar solutions may be necessary for more general scenarios. We discuss the implications of our analysis for stagnation-point flow and non-Newtonian viscoelastic fluid flow problems, illuminating future research directions in the open literature.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surface: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
AIChE J.
,
7
(
1
), pp.
26
28
.10.1002/aic.690070108
2.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plane
,”
ZAMP
,
21
, pp.
645
647
.10.1007/BF01587695
3.
Miklavcic
,
M.
, and
Wang
,
C. Y.
,
2006
, “
Viscous Flow Due to a Shrinking Sheet
,”
Q. Appl. Math.
,
64
(
2
), pp.
283
290
.http://www.jstor.org/stable/43638726
4.
Wang
,
C. Y.
,
2011
, “
Review of Similarity Stretching Exact Solutions of the Navier–Stokes Equations
,”
Eur. J. Mech. B-Fluids
,
30
(
5
), pp.
475
479
.10.1016/j.euromechflu.2011.05.006
5.
Turkyilmazoglu
,
M.
,
2011
, “
Analytic Heat and Mass Transfer of the Mixed Hydrodynamic/Thermal Slip Mhd Viscous Flow Over a Stretching Sheet
,”
Int. J. Mech. Sci.
,
53
(
10
), pp.
886
896
.10.1016/j.ijmecsci.2011.07.012
6.
Turkyilmazoglu
,
M.
,
2015
, “
An Analytical Treatment for the Exact Solutions of Mhd Flow and Heat Over Two-Three Dimensional Deforming Bodies
,”
Int. J. Heat Mass Transfer
,
90
, pp.
781
789
.10.1016/j.ijheatmasstransfer.2015.07.025
7.
Turkyilmazoglu
,
M.
,
2014
, “
Three Dimensional Mhd Flow and Heat Transfer Over a Stretching/Shrinking Surface in a Viscoelastic Fluid With Various Physical Effects
,”
Int. J. Heat Mass Transfer
,
78
, pp.
150
155
.10.1016/j.ijheatmasstransfer.2014.06.052
8.
Hayat
,
T.
,
Imtiaz
,
M.
, and
Alsaedi
,
A.
,
2015
, “
MHD 3D Flow of Nanofluid in Presence of Convective Conditions
,”
J. Mol. Liq.
,
212
, pp.
203
208
.10.1016/j.molliq.2015.09.012
9.
Rosca
,
N. C.
,
Rosca
,
A. V.
,
Aly
,
E. H.
, and
Pop
,
I.
,
2016
, “
Semi-Analytical Solution for the Flow of a Nanofluid Over a Permeable Stretching/Shrinking Sheet With Velocity Slip Using Buongiorno's Mathematical Model
,”
Eur. J. Mech. B-Fluids
,
58
, pp.
39
49
.10.1016/j.euromechflu.2016.01.008
10.
Rohni
,
A. M.
,
Ahmad
,
S.
,
Md. Ismail
,
A. I.
, and
Pop
,
I.
,
2013
, “
Boundary Layer Flow and Heat Transfer Over an Exponentially Shrinking Vertical Sheet With Suction
,”
Int. J. Therm. Sci.
,
64
, pp.
264
272
.10.1016/j.ijthermalsci.2012.08.016
11.
Pal
,
D.
, and
Mandal
,
G.
,
2015
, “
Hydromagnetic Convective-Radiative Boundary Layer Flow of Nanofluids Induced by a Non-Linear Vertical Stretching/Shrinking Sheet With Viscous-Ohmic Dissipation
,”
Powder Technol.
,
279
, pp.
61
74
.10.1016/j.powtec.2015.03.043
12.
Das
,
K.
,
Acharya
,
N.
, and
Kundu
,
P. K.
,
2016
, “
The Onset of Nanofluid Flow Past a Convectively Heated Shrinking Sheet in Presence of Heat Source/Sink: A Lie Group Approach
,”
Appl. Therm. Eng.
,
103
, pp.
38
46
.10.1016/j.applthermaleng.2016.03.112
13.
Narayana
,
P. V. S.
, and
Babu
,
D. H.
,
2016
, “
Numerical Study of Mhd Heat and Mass Transfer of a Jeffrey Fluid Over a Stretching Sheet With Chemical Reaction and Thermal Radiation
,”
J. Taiwan Inst. Chem. Eng.
,
59
, pp.
18
25
.10.1016/j.jtice.2015.07.014
14.
Turkyilmazoglu
,
M.
,
2014
, “
Multiple Analytic Solutions of Heat and Mass Transfer of Magnetohydrodynamic Slip Flow for Two Types of Viscoelastic Fluids Over a Stretching Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
, p.
071701
.10.1115/1.4006165
15.
Asghar
,
S.
,
Jalil
,
M.
,
Hussan
,
M.
, and
Turkyilmazoglu
,
M.
,
2014
, “
Lie Group Analysis of Flow and Heat Transfer Over a Stretching Rotating Disk
,”
Int. J. Heat Mass Transfer
,
69
, pp.
140
146
.10.1016/j.ijheatmasstransfer.2013.09.061
16.
Turkyilmazoglu
,
M.
,
2016
, “
Equivalences and Correspondences Between the Deforming Body Induced Flow and Heat in Two-Three Dimensions
,”
Phys. Fluids
,
28
, p.
043102
.10.1063/1.4945650
17.
Nandy
,
S. K.
,
2015
, “
Unsteady Flow of Maxwell Fluid in the Presence of Nanoparticles Toward a Permeable Shrinking Surface With Navier Slip
,”
J. Taiwan Inst. Chem. Eng.
,
52
, pp.
22
30
.10.1016/j.jtice.2015.01.025
18.
Rosca
,
N. C.
, and
Pop
,
I.
,
2015
, “
Unsteady Boundary Layer Flow Over a Permeable Curved Stretching/Shrinking Surface
,”
Eur. J. Mech. B-Fluids
,
51
, pp.
61
67
.10.1016/j.euromechflu.2015.01.001
19.
Khalili
,
S.
,
Tamim
,
H.
,
Khalili
,
A.
, and
Rashidi
,
M. M.
,
2015
, “
Unsteady Convective Heat and Mass Transfer in Pseudoplastic Nanofluid Over a Stretching Wall
,”
Adv. Powder Technol.
,
26
(
5
), pp.
1319
1326
.10.1016/j.apt.2015.07.006
20.
Meenakumari
,
R.
,
Lakshminarayana
,
P.
,
Vajravelu
,
K.
, and
Sucharitha
,
G.
,
2023
, “
Convective Heat and Mass Transfer Analysis on Casson Nanofluid Flow Over an Inclined Permeable Expanding Surface With Modified Heat Flux and Activation Energy
,”
Numer. Heat Transfer, Part A
, pp.
1
20
.10.1080/10407782.2023.2275281
You do not currently have access to this content.