Abstract

Battery energy storage systems (BESSs) play an important role in increasing the use of renewable energy sources. Owing to the temperature sensitivity of lithium-ion batteries (LIBs), battery thermal management systems (BTMSs) are crucial to ensuring the safe and efficient operation of BESSs. Previous works mainly focused on evaluating the performance of BTMS; however, little attention has been paid to the minimum cooling requirements of BESSs, which are important for optimizing the design and operation of BTMSs. To bridge the knowledge gap, this work investigated the performance of air cooling for a battery cabin under different charge/discharge (C) rates by using a computational fluid dynamics (CFD) model, which is coupled with a battery model. Simulation results show that the inlet airflow rate has the strongest influence. For the studied cases, when the battery operates at C-rates lower than 3, the inlet temperature should be controlled below 35 °C, and the gap between the batteries should be greater than 3 mm to meet the minimum heat dissipation requirement. At a C-rate of 0.5C, natural convection is sufficient to meet the cooling need, whereas at 1C or higher C-rates, forced convection has to be used. Increasing the number of batteries, for example, from 6 to 8, has negligible impact on the inlet flow required to assure the heat dissipation.

References

1.
Yu
,
Z.
,
Zhang
,
J.
, and
Pan
,
W.
,
2023
, “
A Review of Battery Thermal Management Systems About Heat Pipe and Phase Change Materials
,”
J. Energy Storage
,
62
, p.
106827
.10.1016/j.est.2023.106827
2.
Doughty
,
D. H.
,
Butler
,
P. C.
,
Akhil
,
A. A.
,
Clark
,
N. H.
, and
Boyes
,
J. D.
,
2010
, “
Batteries for Large-Scale Stationary Electrical Energy Storage
,”
Electrochem. Soc. Interface
,
19
(
3
), pp.
49
53
.10.1149/2.F05103if
3.
Saw
,
L.
,
Ye
,
Y.
, and
Tay
,
A.
,
2016
, “
Integration Issues of Lithium-Ion Battery Into Electric Vehicles Battery Pack
,”
J. Cleaner Prod.
,
113
, pp.
1032
1045
.10.1016/j.jclepro.2015.11.011
4.
Armand
,
M.
,
Axmann
,
P.
,
Bresser
,
D.
,
Copley
,
M.
,
Edstrom
,
K.
,
Ekberg
,
C.
,
Guyomard
,
D.
, et al.,
2020
, “
Lithium-Ion batteries-Current State of the Art and Anticipated Developments
,”
J. Power Sources
,
479
, p.
228708
.10.1016/j.jpowsour.2020.228708
5.
Zubi
,
G.
,
Dufo- López
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
292
308
.10.1016/j.rser.2018.03.002
6.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.10.1016/j.jpowsour.2017.09.046
7.
Klein
,
M.
,
Tong
,
S.
, and
Park
,
J. W.
,
2016
, “
In-Plane Nonuniform Temperature Effects on the Performance of a Large-Format Lithium-Ion Pouch Cell
,”
Appl. Energy
,
165
, pp.
639
647
.10.1016/j.apenergy.2015.11.090
8.
Zhang
,
Y.
,
Wang
,
C. Y.
, and
Tang
,
X.
,
2011
, “
Cycling Degradation of an Automotive LiFePO4 Lithium-Ion Battery
,”
J. Power Sources
,
196
(
3
), pp.
1513
1520
.10.1016/j.jpowsour.2010.08.070
9.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.10.1016/j.ensm.2017.05.013
10.
Rosewater
,
D.
, and
Williams
,
A.
,
2015
, “
Analyzing System Safety in Lithium-Ion Grid Energy Storage
,”
J. Power Sources
,
300
, pp.
460
471
.10.1016/j.jpowsour.2015.09.068
11.
Verma
,
A.
, and
Rakshit
,
D.
,
2022
, “
Performance Analysis of PCM-Fin Combination for Heat Abatement of Li-Ion Battery Pack in Electric Vehicles at High Ambient Temperature
,”
Therm. Sci. Eng. Prog.
,
32
, p.
101314
.10.1016/j.tsep.2022.101314
12.
Gutsch
,
M.
, and
Leker
,
J.
,
2022
, “
Global Warming Potential of Lithium-Ion Battery Energy Storage Systems: A Review
,”
J. Energy Storage
,
52
, p.
105030
.10.1016/j.est.2022.105030
13.
Wang
,
C.
,
Xu
,
J.
,
Wang
,
M.
, and
Xi
,
H.
,
2023
, “
Experimental Investigation on Reciprocating Air-Cooling Strategy of Battery Thermal Management System
,”
J. Energy Storage
,
58
, p.
106406
.10.1016/j.est.2022.106406
14.
Chen
,
K.
,
Zhang
,
Z.
,
Wu
,
B.
,
Song
,
M.
, and
Wu
,
X.
,
2024
, “
An Air-Cooled System With a Control Strategy for Efficient Battery Thermal Management
,”
Appl. Therm. Eng.
,
236
, p.
121578
.10.1016/j.applthermaleng.2023.121578
15.
An
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, “
A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
154
, pp.
593
601
.10.1016/j.applthermaleng.2019.02.088
16.
Yang
,
H.
,
Wang
,
Z.
,
Li
,
M.
,
Ren
,
F.
, and
Feng
,
Y.
,
2023
, “
A Manifold Channel Liquid Cooling System With Low-Cost and High Temperature Uniformity for Lithium-Ion Battery Pack Thermal Management
,”
Therm. Sci. Eng. Prog.
,
41
, p.
101857
.10.1016/j.tsep.2023.101857
17.
Ambekar
,
S.
,
Rath
,
P.
, and
Bhattacharya
,
A.
,
2022
, “
A Novel PCM and TCE Based Thermal Management of Battery Module
,”
Therm. Sci. Eng. Prog.
,
29
, p.
101196
.10.1016/j.tsep.2022.101196
18.
Jose
,
J.
, and
Kumar Hotta
,
T.
,
2023
, “
A Comprehensive Review of Heat Pipe: Its Types, Incorporation Techniques, Methods of Analysis and Applications
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101860
.10.1016/j.tsep.2023.101860
19.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2018
, “
Experimental and Numerical Studies on Air Cooling and Temperature Uniformity in a Battery Pack
,”
Int. J. Energy Res.
,
42
, pp.
2246
2262
.10.1002/er.4018
20.
Zhang
,
F.
,
Yi
,
M.
,
Wang
,
P.
, and
Liu
,
C.
,
2021
, “
Optimization Design for Improving Thermal Performance of T-Type Air-Cooled Lithium-Ion Battery Pack
,”
J. Energy Storage
,
44
, p.
103464
.10.1016/j.est.2021.103464
21.
Chen
,
K.
,
Chen
,
Y.
,
She
,
Y.
,
Song
,
M.
,
Wang
,
S.
, and
Chen
,
L.
,
2020
, “
Construction of Effective Symmetrical Air-Cooled System for Battery Thermal Management
,”
Appl. Therm. Eng.
,
166
, p.
114679
.10.1016/j.applthermaleng.2019.114679
22.
Na
,
X.
,
Kang
,
H.
,
Wang
,
T.
, and
Wang
,
Y.
,
2018
, “
Reverse Layered Air Flow for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
143
, pp.
257
262
.10.1016/j.applthermaleng.2018.07.080
23.
Sahin
,
R. C.
,
Gocmen
,
S.
, and
Cetkin
,
E.
,
2022
, “
Thermal Management System for Air-Cooled Battery Packs With Flow-Disturbing Structures
,”
J. Power Sources
,
551
, p.
232214
.10.1016/j.jpowsour.2022.232214
24.
Tong
,
W.
,
Somasundaram
,
K.
,
Birgersson
,
E.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2016
, “
Thermo-Electrochemical Model for Forced Convection Air Cooling of a Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
99
, pp.
672
682
.10.1016/j.applthermaleng.2016.01.050
25.
Kim
,
G. H.
,
Smith
,
K.
,
Lee
,
K. J.
,
Santhanagopalan
,
S.
, and
Pesaran
,
A.
,
2011
, “
Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A955
A969
.10.1149/1.3597614
26.
Yi
,
J.
,
Kim
,
U. S.
,
Shin
,
C. B.
,
Han
,
T.
, and
Park
,
S.
,
2013
, “
Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances Between Current Collecting Tab and Lead Wire
,”
J. Electrochem. Soc.
,
160
(
3
), pp.
A437
A443
.10.1149/2.039303jes
27.
Zhang
,
H.
,
Li
,
C.
,
Zhang
,
R.
,
Lin
,
Y.
, and
Fang
,
H.
,
2020
, “
Thermal Analysis of a 6s4p Lithium-Ion Battery Pack Cooled by Cold Plates Based on a Multi-Domain Modeling Framework
,”
Appl. Therm. Eng.
,
173
, p.
115216
.10.1016/j.applthermaleng.2020.115216
28.
Grandi
,
D.
, and
Passerini
,
A.
,
2021
, “
On the Oberbeck-Boussinesq Approximation for Gases
,”
Int. J. Nonlinear Mech.
,
134
, p.
103738
.10.1016/j.ijnonlinmec.2021.103738
29.
Nemati
,
H.
,
Moradaghay
,
M.
,
Shekoohi
,
S. A.
,
Moghimi
,
M. A.
, and
Meyer
,
J. P.
,
2020
, “
Natural Convection Heat Transfer From Horizontal Annular Finned Tubes Based on Modified Rayleigh Number
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104370
.10.1016/j.icheatmasstransfer.2019.104370
30.
Wang
,
P.
,
Zhang
,
Y.
, and
Guo
,
Z.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection in a Cubical Cavity at High Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
,
113
, pp.
217
228
.10.1016/j.ijheatmasstransfer.2017.05.057
31.
Zhang
,
F.
,
Lin
,
A.
,
Wang
,
P.
, and
Liu
,
P.
,
2021
, “
Optimization Design of a Parallel Air-Cooled Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
182
, p.
116062
.10.1016/j.applthermaleng.2020.116062
32.
Ataur
,
R.
,
Hawlader
,
M. N. A.
, and
Khalid
,
H.
,
2017
, “
Two-Phase Evaporative Battery Thermal Management Technology for EVs/HEVs
,”
Int. J. Automot. Technol.
,
18
, pp.
875
882
.10.1007/s12239-017-0085-6
33.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.10.1016/j.jpowsour.2012.10.060
You do not currently have access to this content.