Abstract

While the permeation mechanism of solute (e.g., ions and glucose) through biological membrane has been studied extensively, the mechanical role of water transport in intracellular phenomena has not received much attention. In the present study, to investigate the effect of water permeation on the intracellular pressure response, a novel permeation flux model through a biological membrane is developed by incorporating the coupling permeabilities (between water and ion fluxes) as the water–ion interaction in the ion channels. The proposed model is applied to a two–dimensional permeation problem of water and ions in a closed cell separated by a thin membrane. The permeation flux model reproduces the typical time response of intracellular pressure to action potentials with reasonable agreement with experimental results in the literature, indicating that the pressure response can be characterized by the following three parameters: water permeability, the mass ratio of water and ion, and the ratio of the permeation fluxes of water and ion. In particular, the permeation flux ratio plays an essential role in intracellular phenomena; depending on the value of the permeation flux ratio, the time lag between the action potential and the pressure response is 0.1 times smaller than that expected by the previous researchers, indicating that water transport associated with ions may trigger a pressure response. This study demonstrates the importance of water permeation in intracellular mechanical response through coupling of the fluid motion and electric fields.

References

1.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1939
, “
Action Potentials Recorded From Inside a Nerve Fibre
,”
Nature
,
144
(
3651
), pp.
710
711
.10.1038/144710a0
2.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
Measurement of Current–Voltage Relations in the Membrane of the Giant Axon of Loligo
,”
J. Physiol.
,
116
(
4
), pp.
424
448
.10.1113/jphysiol.1952.sp004716
3.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
Currents Carried by Sodium and Potassium Ions Through the Membrane of the Giant Axon of Loligo
,”
J. Physiol.
,
116
(
4
), pp.
449
472
.10.1113/jphysiol.1952.sp004717
4.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
The Components of Membrane Conductance in the Giant Axon of Loligo
,”
J. Physiol.
,
116
(
4
), pp.
473
496
.10.1113/jphysiol.1952.sp004718
5.
Hodgkin
,
A. L.
, and
Huxley
,
A. F.
,
1952
, “
A Quantitative Description of Membrane Current and Its Application to Conductance and Excitation in Nerve
,”
J. Physiol.
,
117
(
4
), pp.
500
544
.10.1113/jphysiol.1952.sp004764
6.
Hill
,
B. C.
,
Schubert
,
E. D.
,
Nokes
,
M. A.
, and
Michelson
,
R. P.
,
1977
, “
Laser Interferometer Measurement of Changes in Crayfish Axon Diameter Concurrent With Action Potential
,”
Science
,
196
(
4288
), pp.
426
428
.10.1126/science.850785
7.
Tasaki
,
I.
, and
Iwasa
,
K.
,
1980
, “
Shortening of Nerve Fibers Associated With Propagated Nerve Impulse
,”
Biochem. Biophys. Res. Commun.
,
94
(
2
), pp.
716
720
.10.1016/0006-291X(80)91291-7
8.
Tasaki
,
I.
, and
Iwasa
,
K.
,
1982
, “
Rapid Pressure Changes and Surface Displacement in the Squid Giant Axon Associated With Production of Action Potentials
,”
Jpn. J. Physiol.
,
32
(
1
), pp.
69
81
.10.2170/jjphysiol.32.69
9.
Iwasa
,
K.
,
Tasaki
,
I.
, and
Gibbons
,
R. C.
,
1980
, “
Swelling of Nerve Fibers Associated With Action Potentials
,”
Science
,
210
(
4467
), pp.
338
339
.10.1126/science.7423196
10.
Terakawa
,
S.
,
1983
, “
Changes in Intracellular Pressure in Squid Giant Axons Associated With Production of Action Potentials
,”
Biochem. Biophys. Res. Commun.
,
114
(
3
), pp.
1006
1010
.10.1016/0006-291X(83)90661-7
11.
Terakawa
,
S.
,
1985
, “
Potential–Dependent Variations of the Intracellular Pressure in the Intracellularly Perfused Squid Giant Axon
,”
J. Physiol.
,
369
(
1
), pp.
229
248
.10.1113/jphysiol.1985.sp015898
12.
Rvachev
,
M. M.
,
2010
, “
On Axoplasmic Pressure Waves and Their Possible Role in Nerve Impulse Propagation
,”
Biophys. Rev. Lett.
,
05
(
02
), pp.
73
88
.10.1142/S1793048010001147
13.
Kim
,
G. H.
,
Kosterin
,
P.
,
Obaid
,
A. L.
, and
Salzberg
,
B. M.
,
2007
, “
A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals
,”
Biophys. J.
,
92
(
9
), pp.
3122
3129
.10.1529/biophysj.106.103754
14.
Barz
,
H.
,
Schreiber
,
A.
, and
Barz
,
U.
,
2013
, “
Impulses and Pressure Waves Cause Excitement and Conduction in the Nervous System
,”
Med. Hypothesis
,
81
(
5
), pp.
768
772
.10.1016/j.mehy.2013.07.049
15.
Barz
,
H.
, and
Barz
,
U.
,
2014
, “
Pressure Waves in Neurons and Their Relationship to Tangled Neurons and Plaques
,”
Med. Hypothesis
,
82
(
5
), pp.
563
566
.10.1016/j.mehy.2014.02.012
16.
Zhou
,
Y.
,
Morais-Cabral
,
J. H.
,
Kaufman
,
A.
, and
MacKinnon
,
R.
,
2001
, “
Chemistry of Ion Coordinate and Hydration Revealed by a k+ Channel–Fab Complex at 2.0å Resolution
,”
Nature
,
414
(
6859
), pp.
43
48
.10.1038/35102009
17.
Payandeh
,
J.
,
Scheuer
,
T.
,
Zheng
,
N.
, and
Catterall
,
W. A.
,
2011
, “
The Crystal Structure of a Voltage–Gated Sodium Channel
,”
Nature
,
475
(
7356
), pp.
353
358
.10.1038/nature10238
18.
Qiu
,
H.
,
Shen
,
R.
, and
Guo
,
W.
,
2012
, “
Ion Solvation and Structural Stability in a Sodium Channel Investigated by Molecular Dynamics Calculations
,”
Biochim. Biophys. Acta
,
1818
(
11
), pp.
2529
2535
.10.1016/j.bbamem.2012.06.003
19.
Oiki
,
S.
,
Ando
,
H.
,
Kuno
,
M.
,
Shimizu
,
H.
, and
Iwamoto
,
M.
,
2008
, “
A Novel Method for Measuring the Streaming Potential Revealed Coupling Ratio of Ion–Water Flux for Herg Potassium Channel
,”
Seibutsu Butsuri
,
48
(
4
), pp.
246
252
.10.2142/biophys.48.246
20.
Sato
,
N.
,
Takeuchi
,
S.
,
Kajishima
,
T.
,
Inagaki
,
M.
, and
Horinouchi
,
N.
,
2016
, “
A Consistent Direct Discretization Scheme on Cartesian Grids for Convective and Conjugate Heat Transfer
,”
J. Comput. Phys.
,
321
, pp.
76
104
.10.1016/j.jcp.2016.05.034
21.
Takeuchi
,
S.
,
Fukuoka
,
H.
,
Gu
,
J.
, and
Kajishima
,
T.
,
2018
, “
Interaction Problem Between Fluid and Membrane by a Consistent Direct Discretisation Approach
,”
J. Comput. Phys.
,
371
, pp.
1018
1042
.10.1016/j.jcp.2018.05.033
22.
Takeuchi
,
S.
,
Tazaki
,
A.
,
Miyauchi
,
S.
, and
Kajishima
,
T.
,
2019
, “
A Relation Between Membrane Permeability and Flow Rate at Low Reynolds Number in Circular Pipe
,”
J. Membr. Sci.
,
582
, pp.
91
102
.10.1016/j.memsci.2019.03.018
23.
Yamada
,
S.
,
Takeuchi
,
S.
,
Miyauchi
,
S.
, and
Kajishima
,
T.
,
2021
, “
Transport of Solute and Solvent Driven by Lubrication Pressure Through Non-Deformable Permeable Membranes
,”
Microfluidics Nanofluidics
,
25
, p.
83
.10.1007/s10404-021-02480-5
24.
Katchalsky
,
A.
, and
Curran
,
P. F.
,
1965
,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University Press
,
Harvard
.
25.
Wu
,
Y. T.
,
Gilpin
,
K.
, and
Adnan
,
A.
,
2020
, “
Effects of Focal Axonal Swelling Level on the Action Potential Signal Transmission
,”
J. Comput. Phys
.,
48
, pp.
253
263
.10.1007/s10827-020-00750-9
26.
Lu
,
B.
,
Holst
,
M. J.
,
Andrew McCammon
,
J.
, and
Zhou
,
Y. C.
,
2010
, “
Poisson–Nernst–Planck Equations for Simulating Biomolecular Diffusion–Reaction Processes i: Finite Solutions
,”
J. Comput. Phys.
,
229
(
19
), pp.
6979
6994
.10.1016/j.jcp.2010.05.035
You do not currently have access to this content.