Abstract

Computational modeling using the high-viscosity laminar flow approach was applied to study the effect of slab crossing time on slab heating and scale growth. Simulation of an existing industrial walking beam reheating furnace with four zones, outer refractory body, skid, slab, and fluid zone is considered. The fuel used was a mixture of coke oven and blast furnace gas. Preheated air is supplied co-axially with the fuel mixture. The combustion simulation is performed using the constrained equilibrium mixture fraction model. From the results, it has been observed that with an increase in slab residence time, the slab temperature and scale growth increase across the slab. For the system considered, with a fuel mass flowrate of 70,000 kg/h, 150–180 min of slab crossing time is appropriate to obtain desired slab temperature at the discharge end. The overall equivalence ratio is taken as Φ = 1 (fuel/air ratio is the same as stoichiometric ratio). The maximum slab scale thickness is evaluated as 2.4 mm at the discharged end for 180 min of slab crossing time.

References

1.
Liu
,
Y.
,
Wang
,
J.
,
Min
,
C.
,
Xie
,
G.
, and
Sundén
,
B.
,
2020
, “
Performance of Fuel-Air Combustion in a Reheating Furnace at Different Flowrate and Inlet Conditions
,”
Energy
,
206
, p.
118206
.10.1016/j.energy.2020.118206
2.
García
,
A. M.
,
Colorado
,
A. F.
,
Obando
,
J. E.
,
Arrieta
,
C. E.
, and
Amell
,
A. A.
,
2019
, “
Effect of the Burner Position on an Austenitizing Process in a Walking-Beam Type Reheating Furnace
,”
Appl. Therm. Eng.
,
153
, pp.
633
645
.10.1016/j.applthermaleng.2019.02.116
3.
Chakraborty
,
S.
,
Rajora
,
A.
,
Singh
,
S. P.
, and
Talukdar
,
P.
,
2017
, “
Heat Transfer and Discrete Phase Modelling of Coal Combustion in a Pusher Type Reheating Furnace
,”
Appl. Therm. Eng.
,
116
, pp.
66
78
.10.1016/j.applthermaleng.2017.01.056
4.
Chang
,
J. H.
,
Oh
,
J.
, and
Lee
,
H.
,
2020
, “
Development of a Roller Hearth Furnace Simulation Model and Performance Investigation
,”
Int. J. Heat Mass Transfer
,
160
, p.
120222
.10.1016/j.ijheatmasstransfer.2020.120222
5.
Liu
,
Y.
,
Li
,
J.
,
Misra
,
R.
,
Wang
,
Z.
, and
Wang
,
G.
,
2016
, “
A Numerical Analysis of Slab Heating Characteristics in a Rolling Type Reheating Furnace With Pulse Combustion
,”
Appl. Therm. Eng.
,
107
, pp.
1304
1312
.10.1016/j.applthermaleng.2016.07.074
6.
Li
,
P.
,
Li
,
G.
,
Wei
,
L.
, and
Yi
,
Z.
,
2022
, “
Study on Dynamic Thermal Behavior of the Steel Pipes in Walking Beam Quenching Furnace
,”
Case Stud. Therm. Eng.
,
33
, p.
101997
.10.1016/j.csite.2022.101997
7.
Rong
,
W.
,
Li
,
B.
, and
Qi
,
F.
,
2021
, “
Performance Evaluation of a Walking Beam Type Reheating Furnace Based on Energy and Exergy Analysis
,”
Therm. Sci.
,
25
(
6
), pp.
226
226
.10.2298/TSCI200424226R
8.
Zhao
,
J.
,
Ma
,
L.
,
Zayed
,
M. E.
,
Elsheikh
,
A. H.
,
Li
,
W.
,
Yan
,
Q.
, and
Wang
,
J.
,
2021
, “
Industrial Reheating Furnaces: A Review of Energy Efficiency Assessments, Waste Heat Recovery Potentials, Heating Process Characteristics and Perspectives for Steel Industry
,”
Process Saf. Environ. Prot.
,
147
, pp.
1209
1228
.10.1016/j.psep.2021.01.045
9.
Švantner
,
M.
,
Študent
,
J.
, and
Veselý
,
Z.
,
2020
, “
Continuous Walking-Beam Furnace 3D Zonal Model and Direct Thermal-Box Barrier Based Temperature Measurement
,”
Case Stud. Therm. Eng.
,
18
, p.
100608
.10.1016/j.csite.2020.100608
10.
Wang
,
X.
,
Wang
,
C.
, and
Li
,
J.
, “
Simulation Analysis of Temperature Field of Dynamic Slabs Oxidized in Walking-Beam Reheating Furnaces
,” Proceeding of 2018 Chinese Automation Congress (
CAC
), IEEE, Xi'an, China, Nov. 30–Dec. 2, pp.
2050
2053
.10.1109/CAC.2018.8623135
11.
Skopec
,
P.
,
Vyhlidal
,
T.
, and
Knobloch
,
J.
, “
Reheating Furnace Modeling and Temperature Estimation Based on Model Order Reduction
,” Proceeding of 2019 22nd International Conference on Process Control (
PC19
), IEEE, Strbske Pleso, Slovakia, June 11–14, pp.
55
61
.10.1109/PC.2019.8815053
12.
Schluckner
,
C.
,
Gaber
,
C.
,
Demuth
,
M.
,
Forstinger
,
S.
,
Prieler
,
R.
, and
Hochenauer
,
C.
,
2018
, “
CFD-Model to Predict the Local and Time-Dependent Scale Formation of Steels in Air-and Oxygen Enriched Combustion Atmospheres
,”
Appl. Therm. Eng.
,
143
, pp.
822
835
.10.1016/j.applthermaleng.2018.08.010
13.
García
,
A. M.
, and
Amell
,
A. A.
,
2018
, “
A Numerical Analysis of the Effect of Heat Recovery Burners on the Heat Transfer and Billet Heating Characteristics in a Walking-Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1208
1222
.10.1016/j.ijheatmasstransfer.2018.07.121
14.
Tang
,
G.
,
Saavedra
,
A.
,
Okosun
,
T.
,
Wu
,
B.
,
Zhou
,
C. Q.
,
Bai
,
D.
,
Wang
,
Y.
, and
Bodnar
,
R.
,
2016
, “
Modeling of Steel Slab Reheating Process in a Walking Beam Reheating Furnace
,”
ASME
Paper No. HT2016-7282.10.1115/HT2016-7282
15.
Tang
,
G.
,
Wu
,
B.
,
Bai
,
D.
,
Wang
,
Y.
,
Bodnar
,
R.
, and
Zhou
,
C. Q.
,
2018
, “
CFD Modeling and Validation of a Dynamic Slab Heating Process in an Industrial Walking Beam Reheating Furnace
,”
Appl. Therm. Eng.
,
132
, pp.
779
789
.10.1016/j.applthermaleng.2018.01.017
16.
Mayr
,
B.
,
Prieler
,
R.
,
Demuth
,
M.
,
Moderer
,
L.
, and
Hochenauer
,
C.
,
2017
, “
CFD Analysis of a Pusher Type Reheating Furnace and the Billet Heating Characteristic
,”
Appl. Therm. Eng.
,
115
, pp.
986
994
.10.1016/j.applthermaleng.2017.01.028
17.
Casal
,
J. M.
,
Porteiro
,
J.
,
Míguez
,
J. L.
, and
Vázquez
,
A.
,
2015
, “
New Methodology for CFD Three-Dimensional Simulation of a Walking Beam Type Reheating Furnace in Steady State
,”
Appl. Therm. Eng.
,
86
, pp.
69
80
.10.1016/j.applthermaleng.2015.04.020
18.
Prieler
,
R.
,
Bělohradský
,
P.
,
Mayr
,
B.
,
Demuth
,
M.
, and
Hochenauer
,
C.
,
2015
, “
Numerical Modeling of Oxygen Enhanced Combustion and Transient Heating Characteristics in a Reheating Furnace
,”
Proceedings of the Australian Combustion Symposium
, The University of Melbourne, Dec. 7–9, pp.
236
239
.https://www.researchgate.net/publication/289470346_Numerical_Modeling_of_Oxygen_Enhanced_Combustion_and_Transient_Heating_Characteristics_in_a_Reheating_Furnace
19.
Gu
,
M.
,
Chen
,
G.
,
Liu
,
X.
,
Wu
,
C.
, and
Chu
,
H.
,
2014
, “
Numerical Simulation of Slab Heating Process in a Regenerative Walking Beam Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
76
, pp.
405
410
.10.1016/j.ijheatmasstransfer.2014.04.061
20.
Chakravarty
,
K.
, and
Kumar
,
S.
,
2020
, “
Increase in Energy Efficiency of a Steel Billet Reheating Furnace by Heat Balance Study and Process Improvement
,”
Energy Rep.
,
6
, pp.
343
349
.10.1016/j.egyr.2020.01.014
21.
Li
,
C.
,
Huang
,
Y.
,
Sun
,
J.
,
Ni
,
Y.
, and
Lu
,
L.
,
2020
, “
Numerical Simulation of Pressure Distribution in a Walking-Beam Type Reheating Furnace
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
467
(
1
), p.
012025
.10.1088/1755-1315/467/1/012025
22.
Qi
,
F.
,
Wang
,
Z.
,
Li
,
B.
,
He
,
Z.
,
Baleta
,
J.
, and
Vujanovic
,
M.
,
2018
, “
Numerical Study on Characteristics of Combustion and Pollutant Formation in a Reheating Furnace
,”
Therm. Sci.
,
22
(
5
), pp.
2103
2112
.10.2298/TSCI180118277Q
23.
Tang
,
G.
,
Wu
,
B.
,
Bai
,
D.
,
Wang
,
Y.
,
Bodnar
,
R.
, and
Zhou
,
C. Q.
,
2017
, “
Modeling of the Slab Heating Process in a Walking Beam Reheating Furnace for Process Optimization
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1142
1151
.10.1016/j.ijheatmasstransfer.2017.06.026
24.
Gao
,
Q.
,
Pang
,
Y.
,
Sun
,
Q.
,
Liu
,
D.
, and
Zhang
,
Z.
,
2021
, “
Modeling Approach and Numerical Analysis of a Roller-Hearth Reheating Furnace With Radiant Tubes and Heating Process Optimization
,”
Case Stud. Therm. Eng.
,
28
, p.
101618
.10.1016/j.csite.2021.101618
25.
Osei
,
R.
,
Lekakh
,
S. N.
, and
O'Malley
,
R. J.
,
2020
, “
Scale Formation on 430 Stainless Steel in a Simulated Slab Combustion Reheat Furnace Atmosphere
,”
Proceedings of the AISTech 2020
,
Cleveland, OH
, Aug. 31–Sept. 3, pp.
1126
1137
.https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3751&context=matsci_eng_facwork
26.
Landfahrer
,
M.
,
Schluckner
,
C.
,
Prieler
,
R.
,
Gerhardter
,
H.
,
Zmek
,
T.
,
Klarner
,
J.
, and
Hochenauer
,
C.
,
2019
, “
Numerical and Experimental Investigation of Scale Formation on Steel Tubes in a Real-Size Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
129
, pp.
460
467
.10.1016/j.ijheatmasstransfer.2018.09.110
27.
Liu
,
X.
,
Worl
,
B.
,
Tang
,
G.
,
Silaen
,
A. K.
,
Cox
,
J.
,
Johnson
,
K.
,
Bodnar
,
R.
, and
Zhou
,
C. Q.
,
2019
, “
Numerical Simulation of Heat Transfer and Scale Formation in a Reheat Furnace
,”
Steel Res. Int.
,
90
(
4
), p.
1800385
.10.1002/srin.201800385
28.
Prieler
,
R.
,
Mayr
,
B.
,
Demuth
,
M.
,
Holleis
,
B.
, and
Hochenauer
,
C.
,
2016
, “
Prediction of the Heating Characteristic of Billets in a Walking Hearth Type Reheating Furnace Using CFD
,”
Int. J. Heat Mass Transfer
,
92
, pp.
675
688
.10.1016/j.ijheatmasstransfer.2015.08.056
29.
Ghose
,
P.
,
Patra
,
J.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2014
, “
Effect of Air Flow Distribution on Soot Formation and Radiative Heat Transfer in a Model Liquid Fuel Spray Combustor Firing Kerosene
,”
Int. J. Heat Mass Transfer
,
74
, pp.
143
155
.10.1016/j.ijheatmasstransfer.2014.03.001
30.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,” (No. CMOTT-94-6).
31.
Ghose
,
P.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2016
, “
Modeling Nonequilibrium Combustion Chemistry Using Constrained Equilibrium Flamelet Model for Kerosene Spray Flame
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011004
.10.1115/1.4030700
32.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries, Inc
,
Glendale, CA
.
33.
Curran
,
H. J.
,
2019
, “
Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
57
81
.10.1016/j.proci.2018.06.054
34.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
1995
,
Computational Fluid Dynamics the Finite Volume Method
, Pearson Education Limited, Harlow, UK, pp.
1
26
.
35.
Ghose
,
P.
,
Patra
,
J.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2016
, “
Prediction of Soot and Thermal Radiation in a Model Gas Turbine Combustor Burning Kerosene Fuel Spray at Different Swirl Levels
,”
J. Combust. Theory Modell.
,
20
(
3
), pp.
457
485
.10.1080/13647830.2016.1147607
36.
Jang
,
J. H.
,
Lee
,
D. E.
,
Kim
,
M. Y.
, and
Kim
,
H. G.
,
2010
, “
Investigation of the Slab Heating Characteristics in a Reheating Furnace With the Formation and Growth of Scale on the Slab Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
53
(
19–20
), pp.
4326
4332
.10.1016/j.ijheatmasstransfer.2010.05.061
37.
Chen
,
R.
, and
Yeun
,
W.
,
2003
, “
Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen
,”
Oxid. Met.
,
59
(
5/6
), pp.
433
468
.10.1023/A:1023685905159
You do not currently have access to this content.